ECE 463/663 - Test \#3: Name

Calculus of Variations. Optimal Control. Spring 2021
Open Book, Open Notes. Calculators, Matlab permitted - just not other people.

Calculus of Variations: Fixed endpoints
0) What is your birth date (month and day)

m	
birth month: 1..12	d birth date: $1 . .31$

1) Find the function which minimizes the following funcitonal:

$$
J=\int_{0}^{5}\left(m \cdot x^{2}+d \cdot \dot{x}^{2}\right) d t
$$

where m is your birth month (1..12) and d is your birth date (1..31) subject to the constraints

$$
\begin{aligned}
& x(0)=6 \\
& x(5)=4
\end{aligned}
$$

2) Calculus of Variations: Free Endpoint.

Find the function which minimizes the following funcitonal:

$$
J=\int_{0}^{5}\left(m \cdot x^{2}+d \cdot \dot{x}^{2}\right) d t
$$

where m is your birth month (1..12) and d is your birth date (1..31) subject to the constraints

$$
\begin{aligned}
& x(0)=6 \\
& x(5)=\text { free }
\end{aligned}
$$

3) Optimal Control: Find the optimal path, $x(t)$, to minimuze the cost function

$$
J=\int_{0}^{5}\left(m \cdot x^{2}+d \cdot u^{2}\right) d t
$$

where m is your birth month (1..12) and d is your birth date (1..31) subject to the constraints

- $\dot{x}=0.2 x+u$
- $x(0)=6$
- $x(5)=4$

4) Optimal Control: Non-Quadratic Cost Function.

Find the optimal path, $\mathrm{x}(\mathrm{t})$, to minize the following cost function

$$
J=\int_{0}^{5}\left(x^{4}+5 u^{2}\right) d t
$$

subject to the constraint

- $\dot{x}=0.2 x+u$
- $x(0)=6$
- $x(5)=4$

Note: It is sufficient to give the differential equation that $\mathrm{x}(\mathrm{t})$ must satisfy to be optimal.

Bonus: (5pt); Determine $\mathrm{x}(\mathrm{t})$ for problem \#4 using whatever method you like (except for having someone else solve the problem for you).

