ECE 463/663 - Homework \#1

LaPlace Transforms and Dominant Poles. Due Wednesday, Jan 20th
Please make the subject "ECE 463/663 HW\#1" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) Name That System! Give the transfer function for a system with the following step response.

This is a 1st-order system (no overshoot), meaning

$$
G(s)=\left(\frac{a}{s+b}\right)
$$

DC gain $=8.8$

$$
\frac{a}{b}=8.8
$$

2% Settling Time $=200 \mathrm{~ms}($ approx $)$

$$
b=\frac{4}{200 m s}=20
$$

or

$$
G(s) \approx\left(\frac{176}{s+20}\right)
$$

2) Name That System! Give the transfer function for a system with the following step response.

This is a second-order system (oscillates, meaning sine and cosine terms).
DC gain $=1.35$
Frequency of oscillation

$$
\omega_{d}=\left(\frac{3 \text { cycles }}{310 \mathrm{~ms}}\right) 2 \pi=60.8 \frac{\mathrm{raa}}{\mathrm{sec}}
$$

2% settling time $=310 \mathrm{~ms}$

$$
\sigma=\frac{4}{310 \mathrm{~ms}}=12.9
$$

meaning

$$
G(s) \approx\left(\frac{5215}{(s+12.9+j 60.8)(s+12.9-j 60.8)}\right)
$$

(The numerator is whatever it takes to make the DC gain 1.35)

Problem 3-6) Assume

$$
Y=\left(\frac{300}{(s+3)(s+9)(s+10)}\right) X
$$

3) What is the differential equation relating X and Y ?

Multiply out and cross multiply

```
>> poly([-3,-9,-10])
ans = }\begin{array}{lllll}{1}&{22}&{147}&{270}
```

$$
\left(s^{3}+22 s^{2}+147 s+270\right) Y=300 X
$$

'sY' means 'the derivative of Y '

$$
y^{\prime \prime \prime}+22 y^{\prime \prime}+147 y^{\prime}+270 y=300 x
$$

4) Determine $y(t)$ assuming $x(t)$ is a sinusoidal input:

$$
x(t)=2 \cos (3 t)+4 \sin (3 t)
$$

Use phasor analysis

$$
\begin{aligned}
& s=j 3 \\
& X=2-j 4 \quad \text { real }=\text { cosine, -imag }=\text { sine } \\
& Y=\left(\frac{300}{(s+3)(s+9)(s+10)}\right)_{s=j 3}(2-j 4) \\
& Y=-2.569-j 1.896
\end{aligned}
$$

meaning

$$
y(t)=-2.569 \cos (3 t)+1.896 \sin (3 t)
$$

real $=$ cosine,- imag $=$ sine
5) Determine $y(t)$ assuming $x(t)$ is a step input:

$$
x(t)=u(t)
$$

Since $x(t)=0$ for $t<0$, use LaPlace transforms

$$
\begin{aligned}
& Y=\left(\frac{300}{(s+3)(s+9)(s+10)}\right) X \\
& Y=\left(\frac{300}{(s+3)(s+9)(s+10)}\right)\left(\frac{1}{s}\right)
\end{aligned}
$$

use partial fractions

$$
Y=\left(\frac{1.111}{s}\right)+\left(\frac{-2.381}{s+3}\right)+\left(\frac{5.555}{s+9}\right)+\left(\frac{-4.386}{s+10}\right)
$$

meaning

$$
y(t)=1.111-2.381 e^{-3 t}+5.555 e^{-9 t}-4.386 e^{-10 t} \quad \text { for } t>0
$$

6a) Determine a 1st-order approximation for this system

$$
Y \approx\left(\frac{a}{s+b}\right) X
$$

Keep the dominant pole and the DC gain

$$
Y=\left(\frac{300}{(s+3)(s+9)(s+10)}\right) X \approx\left(\frac{3.333}{s+3}\right) X
$$

6b) Compare the step response of your 1st-order model to the actual 3rd-order system

```
>> G1 = zpk([],[-3],[3.333]);
>>G3 = zpk([],[-3,-9,-10],300);
>> t = [0:0.01:3]';
>> y1 = step(G1,t);
>> y3 = step (G3,t);
>> plot(t,y1,'b',t,y3,'r');
>> xlabel('Time (seconds)');
```


