ECE 463/663 - Homework #2

State-Space, Eigenvalues, Eigenvectors. Due Monday, Jan 25th

Please make the subject "ECE 463/663 HW#2" if submitting homework electronically to Jacob_Glower@yahoo.com (or on blackboard)

1) For the following RLC circuit

Specify the dynamics for the system (write N coupled differential equations)

$$V_{1} = 0.5sI_{1} = V_{in} - 10I_{1} - V_{4}$$

$$V_{2} = 0.2sI_{2} = V_{in} - 5I_{2} - V_{4}$$

$$V_{3} = 0.25sI_{3} = V_{4} - 15I_{3}$$

$$I_{4} = 0.1sV_{4} = I_{1} + I_{2} - I_{3} - \left(\frac{V_{3} - V_{4}}{50}\right)$$

$$I_{5} = 0.5sV_{5} = \left(\frac{V_{4} - V_{5}}{50}\right)$$

Simplify

$$sI_1 = 2V_{in} - 20I_1 - 2V_4$$

$$sI_2 = 5V_{in} - 25I_2 - 5V_4$$

$$sI_3 = 4V_4 - 60I_3$$

$$sV_4 = 10I_1 + 10I_2 - 10I_3 - 0.2V_3 + 0.2V_4$$

$$sV_5 = 0.04V_4 - 0.04V_5$$

Express these dynamics in state-space form

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ V_4 \\ V_5 \end{bmatrix} = \begin{bmatrix} -20 & 0 & 0 & -2 & 0 \\ 0 & -25 & 0 & -5 & 0 \\ 0 & 0 & -60 & 4 & 0 \\ 10 & 10 & -10 & -0.2 & 0.2 \\ 0 & 0 & 0 & 0.04 & -0.04 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ V_4 \\ V_5 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \\ 0 \\ 0 \end{bmatrix} V_{in}$$

The output equation (Y): write the voltage node equation

$$\left(\frac{Y-V_4}{10}\right) + \left(\frac{Y-V_5}{40}\right) = 0$$

$$\left(\frac{1}{10} + \frac{1}{40}\right)Y = \left(\frac{1}{10}\right)V_4 + \left(\frac{1}{40}\right)V_5$$

$$Y = 0.8V_4 + 0.2V_5$$

$$Y = \begin{bmatrix} 0 & 0 & 0 & 0.8 & 0.2 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ V_4 \\ V_5 \end{bmatrix}$$

Determine the transfer function from Vin to Y

>>

2) For the transfer function from Vin to Y

Determine a 1st or 2nd-order approximation for this trasfer function

```
>> zpk(G)

56 (s+21.43) (s+60) (s+0.05)

(s+59.35) (s+23.22) (s+17.94) (s+4.694) (s+0.03791)

>> DC = evalfr(G,0)

DC = 0.8182
```

Keep

- The dominant pole at s = -0.03791
- The zero at s = -0.05 is within 10x the pole
- The DC gain is 0.8182

$$G(s) \approx \left(\frac{0.6204(s+0.05)}{s+0.03791}\right)$$

Note: This system has a non-zero D matrix

```
>> ss(G1)

a = -0.03791

b = 0.11

c = 0.06822

d = 0.6204
```

Plot the step response of the actual 5th-order system and its approximation shows the two match pretty well

- 3) For this circuit...
 - What initial condition will the energy in the system decay as slowly as possible?
 - What initial condition will the energy in the system decay as fast as possible?

This is an eigenvalue / eigenvetctor problem

If the intial conditions are proportional to the fast eigenvector, the transients decay as exp(-59.34t)

If the initial conditions are proportional to the slow eigenvector, the transients decay as exp(-0.0379t)

4) For the following 10-stage RC circuit

- Specify the dynamics for the system (write N coupled differential equations)
 - note: Nodes 1..9 have the same form. Just write the node equation for node 1 and node 10.
- Express these dynamics in state-space form
- Determine the transfer function from Vin to V10

Node V2:

$$0.04sV_2 = \left(\frac{V_1 - V_2}{5}\right) + \left(\frac{V_3 - V_2}{5}\right) - \left(\frac{V_2}{50}\right)$$

$$sV_2 = 5V_1 - 10.5V_2 + 5V_3$$

ditto for nodes 1..9. Node #10 is slightly different

$$0.04sV_{10} = \left(\frac{V_9 - V_{10}}{5}\right) - \left(\frac{V_{10}}{50}\right)$$

$$sV_{10} = 5V_9 - 5.5V_{10}$$

In state-space form, the {A, B, C, D} matricies and transfer function are:

```
A = zeros(10, 10);
for i=1:9
   A(i,i) = -10.5;
   A(i+1,i) = 5;
   A(i,i+1) = 5;
   end
A(10,10) = -5.5
A =
  -10.5000
               5.0000
                                                                                                              0
    5.0000
             -10.5000
                          5.0000
                        -10.5000
                                      5.0000
               5.0000
                          5.0000
                                   -10.5000
                                                5.0000
                                                                            0
                                                                                       0
          0
                     0
                                                                 0
                                                                                                             Ω
          0
                     0
                                0
                                     5.0000
                                              -10.5000
                                                            5.0000
                                                                                       0
                     0
                                0
                                           0
                                                5.0000
                                                         -10.5000
                                                                       5.0000
                     0
                                0
                                           0
                                                           5.0000
                                                                     -10.5000
                                                                                  5.0000
                                                                                -10.5000
                                           0
                                                                       5.0000
                                                                                             5.0000
                                                                                                             0
          0
                     0
                                0
                                                      0
                                                                 0
                                                                                           -10.5000
                     0
                                0
                                           0
                                                      0
                                                                 0
                                                                            0
                                                                                  5.0000
                                                                                                        5.0000
          0
                                                                 0
                                                                                             5.0000
                                                                                                       -5.5000
```

```
0
                                                                    0
                                                                    0
    C = zeros(1,10);
  C(10) = 1
                                                                                                                                                0
                                                                                                                                                                                                                                                                                                                                                                          0
                                                                                                                                                                                                                                                                                                                                                                                                                                                         0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0
                                                                                                                                                                                                            0
                                                                                                                                                                                                                                                                                                0
  D = 0;
  G = ss(A, B, C, D);
DC = evalfr(G, 0)
                                                   DC = 0.0741
  zpk(G)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 9765625
      (s+20.06) \quad (s+18.76) \quad (s+16.73) \quad (s+14.15) \quad (s+11.25) \quad (s+8.275) \quad (s+5.5) \quad (s+3.169) \quad (s+1.49) \quad (s+0.6117) \quad (s+18.76) \quad (s+18.
```

5) For the transfer function for problem #4

- Determine a 2nd-order approximation for this trasfer function
- Plot the step response of the actual 10th-order system and its 2nd-order approximation

Keep the two most dominant poles

Match the DC gain

- 6) For the circuit for problem #4
 - What initial condition will decay as slowly as possible?
 - What initial condition will decay as fast as possible?

This is an eigenvector problem.

```
>> [M, V] = eig(A)
M =
   fast
                                                                                        slow
   -0.1286
           -0.2459
                     0.3412
                              0.4063
                                       0.4352
                                                 0.4255
                                                         0.3780
                                                                    0.2969
                                                                            -0.1894
                                                                                       0.0650
   0.2459
            0.4063
                     -0.4255
                              -0.2969
                                       -0.0650
                                                 0.1894
                                                          0.3780
                                                                    0.4352
                                                                             -0.3412
                                                                                       0.1286
                                                 -0.3412
  -0.3412
            -0.4255
                     0.1894
                              -0.1894
                                       -0.4255
                                                          -0.0000
                                                                    0.3412
                                                                             -0.4255
                                                                                       0.1894
   0.4063
           0.2969
                     0.1894
                              0.4352
                                       0.1286
                                                 -0.3412
                                                          -0.3780
                                                                    0.0650
                                                                             -0.4255
                                                                                       0.2459
  -0.4352
           -0.0650
                    -0.4255
                              -0.1286
                                       0.4063
                                                 0.1894
                                                          -0.3780
                                                                   -0.2459
                                                                             -0.3412
                                                                                       0.2969
   0.4255
           -0.1894
                     0.3412
                              -0.3412
                                       -0.1894
                                                 0.4255
                                                          0.0000
                                                                   -0.4255
                                                                             -0.1894
                                                                                       0.3412
                    0.0000
                              0.3780
                                       -0.3780
                                                 -0.0000
  -0.3780
            0.3780
                                                          0.3780
                                                                   -0.3780
                                                                             -0.0000
                                                                                       0.3780
           -0.4352
                             0.0650 0.2459 -0.4255
                                                         0.3780
                                                                              0.1894
   0.2969
                    -0.3412
                                                                   -0.1286
                                                                                       0.4063
                    0.4255
            0.3412
                                                 -0.1894
                                                          -0.0000
                                                                              0.3412
                                                                                       0.4255
   -0.1894
                              -0.4255
                                        0.3412
                                                                    0.1894
   0.0650
           -0.1286
                     -0.1894
                               0.2459
                                       -0.2969
                                                  0.3412
                                                          -0.3780
                                                                    0.4063
                                                                              0.4255
                                                                                       0.4352
>> eig(A)'
  -20.0557 -18.7624 -16.7349 -14.1534 -11.2473 -8.2748
                                                         -5.5000
                                                                   -3.1695
                                                                            -1.4903
                                                                                      -0.6117
```

If the initial condition is proportional to the fast eigenvector, the transient decays as exp(-20.055t)

If the initial condition is proportional to the slow eigenvector, the transient decays as exp(-0.6117t)

- 7) Modify the program *heat.m* to match the dynamics you calculated for this problem.
 - Give the program listing
 - Give the response for Vin = 0 and the initial conditions being
 - The slowest eigenvector
 - The fastest eigenvector
 - A random set of voltages

Fast Mode: Quickly decays to zero

Slow Mode: Slowly decays

Random initial condition: quickly converges to the slow mode

Code

```
% 10-stage RC Filter
V = rand(10, 1);
V0 = 0;
DATA = [V0; V];
dV = zeros(10,1);
dt = 0.001;
t = 0;
while (t < 10)
         = 5*V0
   dV(1)
                   -10.5*V(1) + 5*V(2);
   dV(2)
          = 5*V(1) - 10.5*V(2) + 5*V(3);
   dV(3)
          = 5*V(2) - 10.5*V(3) + 5*V(4);
          = 5*V(3) - 10.5*V(4) + 5*V(5);
   dV (4)
          = 5*V(4) - 10.5*V(5) + 5*V(6);
   dV(5)
          = 5*V(5) - 10.5*V(6) + 5*V(7);
   dV(6)
   dV(7)
          = 5*V(6) - 10.5*V(7) + 5*V(8);
          = 5*V(7) - 10.5*V(8) + 5*V(9);
   dV(8)
   dV(9)
         = 5*V(8) - 10.5*V(9) + 5*V(10);
   dV(10) = 5*V(9) - 5.5*V(10);
   V = V + dV*dt;
   t = t + dt;
   plot([0:10], [V0;V], '.-');
   ylim([0,1.2]);
   pause(0.01);
   end
```