ECE 463/663 - Homework \#5

Full State Feedback. Due Monday, February 22nd

1) Write a Matlab m-file which is passed

- The system dynamics (A, B),
- The desired pole locations (P)
and then returns the feedback gains, Kx , so that $\operatorname{roots}(\mathrm{A}-\mathrm{B} \mathrm{Kx})=\mathrm{P}$
function $[K x]=\operatorname{ppl}(A, B, P)$

```
function [ Kx ] = ppl( A, B, PO)
N = length(A);
T1 = [];
for i=1:N
    T1 = [T1, (A^ (i-1))*B];
end
P = poly(eig(A));
T2 = [];
for i=1:N
    T2 = [T2; zeros(1,i-1), P(1:N-i+1)];
end
T3 = zeros(N,N);
for i=1:N
    T3(i, N+1-i) = 1;
end
T = T1*T2*T3;
Pd = poly(PO);
dP = Pd - P;
Flip = [N+1:-1:2]';
Kz = dP(Flip);
Kx = Kz*inv(T);
end
```

Problem 2) Assume the following dynamic system:

$$
\begin{aligned}
& s X=\left[\begin{array}{ccccc}
-10.5 & 5 & 0 & 0 & 0 \\
5 & -10.5 & 5 & 0 & 0 \\
0 & 5 & -10.5 & 5 & 0 \\
0 & 0 & 5 & -10.5 & 5 \\
0 & 0 & 0 & 5 & -5.5
\end{array}\right] X+\left[\begin{array}{c}
30 \\
0 \\
0 \\
0 \\
0
\end{array}\right] U \\
& Y=\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right] X X
\end{aligned}
$$

Find the feedback control law of the form

$$
U=K_{r} R-K_{x} X
$$

so that

- The DC gain is 1.000 and
- The closed-loop poles are at $\{-3,-4,-5,-6,-7\}$

Plot

- The resulting closed-loop step reponse, and
- The resulting input, U

```
>> A = [-10.5,5,0,0,0;5,-10.5,5,0,0;0,5,-10.5,5,0;0,0,5,-10.5,5
0,0,0,5,-5.5]
A =
    -10.5000 
>> B = [30;0;0;0;0];
>> C = [0,0,0,0,1];
>> D = 0;
>> Kx = ppl(A,B,[-3,-4,-5,-6,-7])
Kx = -0.7500 1.9000 -2.9583 2.9418 -1.2251
>> DC = -C*inv (A-B*Kx)*B
DC = 7.4405
>> Kr = 1/DC
Kr = 0.1344
```

comment: This is actually a decent design:

- The gains are reasonable.
- The input (u) is reasonable - a slight hump to speed up the system
- Negative gains in Kx are worrying: they provide positive feedback

```
>> G2 = ss(A-B*Kx, B*Kr, [C ; -Kx], [D ; Kr]);
>> t = [0:0.01:5]';
>> y2 = step (G2,t);
>> plot(t,y2(:,1),'b',t,y2(:,2),'r')
>> xlabel('Time (seconds)');
>
```


Open-Loop Step Response (blue) and contrl input U (red)

Note: This is kind of what you're looking for in a step response:

- The output meets the requirements (2 second settling time, no overshoot)
- The input has a reasonable peak which tries to speed up the response (similar to hitting the gas pedal when the light turns green and then backing off to maintain speed)

3) Repeat problem \#2 but find Kx and Kr so that

- The DC gain is 1.000 and
- The closed-loop dominant pole is at $\mathrm{s}=-3$ and the other four poles don't move

Plot the resulting closed-loop step reponse.

```
>> eig(A)
    -18.9125
    -14.6542
    -9.0769
    -3.9514
    -0.9051
>> Kx = ppl(A,B,[-3,-4,-9,-14.6,-19])
Kx = 0.0700 0.1320 0.1961 0.2226 0.2474
>> DC = -C*inv (A-B*Kx)*B
DC = 0.6259
>> Kr = 1/DC
Kr = 1.5978
>> G3 = ss(A-B*Kx, B*Kr, [C ; -Kx], [D ; Kr]);
>> y3 = step (G3,t);
>> plot(t,y2(:,1),'b',t,y2(:,2),'r')
>> plot(t,y3(:,1),'b',t,y3(:,2),'r')
>> xlabel('Time (seconds)');
>> >> plot(t,y0,'r',t,y3,'b')
```

comment: By allowing the system to behave the way it wants,

- The feedback gains are all positive (good), and
- Their amplitude is a low lower.

Lower gains tend to work better (less sensitive to modeling errors, sensor dynamics, delays, etc)

Open-Loop Response (red) and closed-loop response (blue)
4) Repeat problem \#2 but find Kx and Kr so that

- The DC gain is 1.000
- The 2% settling time is 2 seconds, and
- There is 5\% overshoot for a step input.

Plot the resulting closed-loop step response

Translating the requirements to pole location

- The real part of the dominant pole is at $\mathrm{s}=-2$
- The damping ratio associated with 5% overshoot is 0.68 (approx)
- The angle of the dominant pole is 47.2 degrees
- $\mathrm{s}=-2+\mathrm{j} 2.16$

Place the closed-loop poles at $\mathrm{s}=\{-2+\mathrm{j} 2.16,-2-\mathrm{j} 2.16,-9,-14.6,-19\}$

```
>> Kx = ppl(A,B,[-2+j*2.16,-2-j*2.16,-9,-14.6,-19])
Kx = lllllll}\begin{array}{ll}{-0.0300}&{-0.0022 0.1149 0.2346}\end{array}0.333
>> DC = -C*inv(A-B*Kx)*B
DC = 0.8667
>> Kr = 1/DC
Kr = 1.1538
>> G4 = ss(A-B*Kx, B*Kr, [C ; -Kx], [D ; Kr]);
>> y4 = step (G4,t);
>> plot(t,y4(:,1),'b',t,y4(:,2),'r')
```

note: by allowing the dominant pole to be complex at 45 degrees, you can get the same speed (approx) with lower gains and lower input. Pole placement can place the poles anywhere - some locations work better than others though.

Open-Loop Response (red) and closed-loop response (blue)

