ECE 463/663 - Homework \#9

Calculus of Variations. LQG Control. Due Monday, April 7th

Soap Film

1) Calculate the shape of a soap film connecting two rings around the X axis:

- $Y(0)=6$
- $\mathrm{Y}(2)=5$

The shape of a soap film minimizes the following functional

$$
F=y \sqrt{1+\left(y^{\prime}\right)^{2}}
$$

From the lecture notes, the solution is of the form

$$
y=a \cdot \cosh \left(\frac{x-b}{a}\right)
$$

Plugging in the two endpoints gives 2 equations for 2 unknowns

$$
\begin{aligned}
& 6=a \cdot \cosh \left(\frac{0-b}{a}\right) \\
& 5=a \cdot \cosh \left(\frac{2-b}{a}\right)
\end{aligned}
$$

Solving using fminsearch and Matlab - first create a cost function

```
function [ J ] = cost_soap( z )
    a = z(1);
    b = z(2);
    e1 = a * cosh((0-b)/a) - 6;
    e2 = a * cosh((2-b)/a) - 5;
    J = e1^2 + e2^2;
    end
```

Now solve using Matlab:

```
>> [Z,e] = fminsearch('cost_soap',[1,2])
```



```
e = 5.2301e-010
>>
```

Plotting:

```
>> a = Z(1);
>> b = Z(2);
>> x = [0:0.01:2]';
>> y = a*cosh((x-b)/a);
>> plot(x,y);
>> ylim([0,7])
```


2) Calculate the shape of a soap film connecting two rings around the X axis:

- $Y(0)=6$
- $Y(2)=$ free

The shape of a soap film minimizes the following functional

$$
F=y \sqrt{1+\left(y^{\prime}\right)^{2}}
$$

From the lecture notes, the solution is of the form

$$
y=a \cdot \cosh \left(\frac{x-b}{a}\right)
$$

Plugging in the left endpoint

$$
6=a \cdot \cosh \left(\frac{0-b}{a}\right)
$$

The right endpoint satisfies the constraint

$$
\begin{aligned}
& F_{y^{\prime}}=0 \\
& -a \sinh \left(\frac{x-b}{a}\right)=0 \\
& \sinh \left(\frac{2-b}{a}\right)=0
\end{aligned}
$$

The cost function in Matlab becomes

```
function [ J ] = cost_soap( z )
    a = z(1);
    b = z(2);
    e1 =a* cosh((0-b)/a) - 6;
    e2 = -a * sinh((1-b)/a);
    J = e1^2 + e2^2;
    end
```

Minimizing it

```
>> [Z,e] = fminsearch('cost_soap',[1,2])
Z = crecm
e = 1.9957e-009
>> a = Z(1);
>> b = Z(2);
>> x = [0:0.01:2]';
>> y = a*cosh((x-b)/a);
>> plot(x,y,'b',[1,1],[0,5],'r--')
>>
```


Hanging Chain

3) Calculate the shape of a hanging chain subject to the following constraints

- Length of chain $=4$ meters
- Left Endpoint: $(0,6)$
- Right Endpoint: $(2,5)$

The functional a hanging chain minimizes is

$$
F=x \sqrt{1+\left(y^{\prime}\right)^{2}}+M \sqrt{1+\left(y^{\prime}\right)^{2}}
$$

The solution (from lecture notes) is

$$
y=a \cosh \left(\frac{x-b}{a}\right)-M
$$

Plugging in the endpoint constraints

$$
\begin{aligned}
& 6=a \cosh \left(\frac{0-b}{a}\right)-M \\
& 5=a \cosh \left(\frac{2-b}{a}\right)-M
\end{aligned}
$$

The length constraint gives

$$
\left(a \sinh \left(\frac{x-b}{a}\right)\right)_{0}^{2}=4
$$

Solving using Matlab

```
function [ J ] = cost_roap( z )
    a = z(1);
    b = z(2);
    M = z(3);
    e1 = a * cosh((0-b)/a) - M - 6;
    e2 = a * cosh((2-b)/a) - M - 5;
    e3 = a*sinh((2-b)/a) - a* sinh((0-b)/a) - 4;
    J = e1^2 + e2^2 + e3^2;
    x = [0:0.01:2];
    y = a* cosh( (x-b)/a ) - M;
    plot(x,y);
        pause(0.01);
    end
>> [Z,e] = fminsearch('cost_roap',[1,2,3])
Z = cccec
e = 1.2132e-008
```

Result:

$$
y=0.4717 \cdot \cosh \left(\frac{x-1.1205}{0.4717}\right)+3.4416
$$

Ricatti Equation

4) Find the function, $x(t)$, which minimizes the following funcional

$$
J=\int_{0}^{10}\left(x^{2}+9 \dot{x}^{2}\right) d t \quad x(0)=6 \quad x(10)=4
$$

The funcitonal is

$$
F=x^{2}+9 \dot{x}^{2}
$$

Solving the Euler LaGrange equation

$$
\begin{aligned}
& \frac{d}{d t}\left(F_{x^{\prime}}\right)-F_{x}=0 \\
& \frac{d}{d t}(18 \dot{x})-2 x=0 \\
& 18 \ddot{x}-2 x=0
\end{aligned}
$$

Using LaPlace notation

$$
9 s^{2} X-X=0
$$

$$
s= \pm \frac{1}{3}
$$

$$
x(t)=a e^{t / 3}+b e^{-t / 3}
$$

Plugging in the endpoint constraints

$$
\begin{aligned}
& x(0)=6=a+b \\
& x(10)=4=28.03 a+0.03567 b
\end{aligned}
$$

Solving

$$
a=0.1352 \quad b=5.8648
$$

5) Find the function, $x(t)$, which minimizes the following funcional

$$
\begin{aligned}
& J=\int_{0}^{8}\left(4 x^{2}+9 u^{2}\right) d t \\
& \dot{x}=-0.2 x+u \\
& x(0)=6 \\
& x(10)=4
\end{aligned}
$$

The functional is

$$
F=4 x^{2}+9 u^{2}+m(-0.2 x+u-\dot{x})
$$

This results in three Euler LaGrange equations
With respect to x

$$
\begin{aligned}
& \frac{d}{d t}\left(F_{x^{\prime}}\right)-F_{x}=0 \\
& \frac{d}{d t}(-m)-(8 x-0.2 m)=0 \\
& -\dot{m}-8 x+0.2 m=0
\end{aligned}
$$

With respect to u

$$
\begin{aligned}
& \frac{d}{d t}\left(F_{u^{\prime}}\right)-F_{u}=0 \\
& \frac{d}{d t}(0)-(18 u+m)=0
\end{aligned}
$$

With respect to m

$$
\begin{aligned}
& \frac{d}{d t}\left(F_{m^{\prime}}\right)-F_{m}=0 \\
& -(-0.2 x+u-\dot{x})=0
\end{aligned}
$$

Solving

$$
\begin{aligned}
& m=-18 u \\
& u=\dot{x}+0.2 x \\
& -\dot{m}-8 x+0.2 m=0 \\
& -(-18 \dot{u})-8 x+0.2(-18 u)=0 \\
& 18(\ddot{x}+0.2 \dot{x})-8 x-3.6(\dot{x}+0.2 x)=0 \\
& \ddot{x}-0.4844 x=0
\end{aligned}
$$

Using LaPlace notation

$$
\left(s^{2}-0.4844\right) X-0
$$

$$
s= \pm 0.6960
$$

and

$$
x(t)=a e^{0.6960 t}+b e^{-0.6960 t}
$$

Plugging in the endpoints

$$
\begin{aligned}
& x(0)=6=a+b \\
& x(10)=4=1053.8 a+0.000949 b
\end{aligned}
$$

solving

$$
a=0.0038
$$

$$
\mathrm{b}=5.9962
$$

$$
x(t)=0.0038 \cdot e^{0.6960 t}+5.9962 \cdot e^{-0.6969 t}
$$

LQG Control

6) Cart \& Pendulum (HW \#6): Design a full-state feedback control law of the form

$$
U=K_{r} R-K_{x} X
$$

for the cart and pendulum system from homework \#6 using LQG control so that

- The DC gain is 1.00
- The 2% settling time is 6 seconds, and
- There is less than 10% overshoot for a step input.

The desired closed-loop dominant pole should be at about

$$
s=-0.67+j 0.91
$$

for the desired transfer function (2nd order approximation)

$$
G_{d}=\left(\frac{1.27}{s^{2}+1.33 s+1.27}\right)
$$

It's kind of subjective, but what I would up with is

```
Kx = lqr(A, B, diag([30,0,0,0]), 1);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
Kx = -5.4772 -126.2762 -9.2941 -24.8375
>> eig(A - B*Kx)
    -7.0000 + 0.3135i
    -7.0000 - 0.3135i
    -0.7717 + 0.7055i
    -0.7717 - 0.7055i
Kr = -5.4772
```


Compare your results with homework \#6

- Where are the closed-loop poles with pole placement and with LQG control?
- Are the feedback gains larger or smaller with LQG control?
- Which one works better?

In homework \#6, I placed the poles

```
>> Kx = ppl(A, B, [-0.5+j*0.54, -0.5-j*0.54, -3, -4])
Kx = -0.6632 -69.2048 -1.6113 -9.6113
```

The gains are similar - slightly larger with LQR. But then the system is slightly faster (dominant poles at $-0.77+\mathrm{j} 0.7$)

Changing Q so that the dominant pole is about the same spot

```
>> Kx = lqr(A, B, diag([6,0,0,0]), 1);
Kx = -2.4495 -115.0882 -5.7478 -20.7570
eig(A - B*Kx)
    -7.0000 + 0.1400i
    -7.0000 - 0.1400i
    -0.5046 + 0.4848i
    -0.5046 - 0.4848i
```

For a "fair" comparison, LQR gave slightly larger gains. They're pretty close however
7) Ball and Beam (HW \#6): Design a full-state feedback control law of the form

$$
U=K_{r} R-K_{x} X
$$

for the ball and beam system from homework \#6 using LQG control so that

- The DC gain is 1.00
- The 2% settling time is 6 seconds, and
- There is less than 10% overshoot for a step input.

```
Kx = lqr(A, B, diag([1,400,0,0]), 1);
Kx = -9.9010 38.7983 -7.4456 13.9281
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
Kr = -5.0010
>> eig(A - B*Kx)
ans =
    -1.6553 + 1.6553i
    -1.6553 - 1.6553i
    -1.1303 + 1.1303i
    -1.1303 - 1.1303i
```

in contrast with pole placement

```
>> Kx = ppl(A, B, [-0.5+j*0.54, -0.5-j*0.54, -3, -4])
Kx = llllll
```


