
ECE 463/663 - Homework #9
Calculus of Variations. LQG Control.  Due Monday, April 7th

Soap Film

1)   Calculate the shape of a soap film connecting two rings around the X axis:

Y(0) = 6

Y(2) = 5

The shape of a soap film minimizes the following functional

F = y 1 + (y )
2

From the lecture notes, the solution is of the form

y = a ⋅ cosh 
x−b
a



Plugging in the two endpoints gives 2 equations for 2 unknowns

6 = a ⋅ cosh 
0−b
a



5 = a ⋅ cosh 
2−b
a



Solving using fminsearch and Matlab - first create a cost function

function [ J ] = cost_soap( z )
 
   a = z(1);
   b = z(2);
   
   e1 = a * cosh((0-b)/a) - 6;
   e2 = a * cosh((2-b)/a) - 5;
   
   J = e1^2 + e2^2;
      
   end

Now solve using Matlab:

>> [Z,e] = fminsearch('cost_soap',[1,2])

         a          b

Z =    4.8223    3.3052

e =  5.2301e-010

>> 



Plotting:

>> a = Z(1);
>> b = Z(2);
>> x = [0:0.01:2]';
>> y = a*cosh((x-b)/a);
>> plot(x,y);
>> ylim([0,7])
>> 



2)   Calculate the shape of a soap film connecting two rings around the X axis:

Y(0) = 6

Y(2) = free

The shape of a soap film minimizes the following functional

F = y 1 + (y )
2

From the lecture notes, the solution is of the form

y = a ⋅ cosh 
x−b
a



Plugging in the left endpoint

6 = a ⋅ cosh 
0−b
a



The right endpoint satisfies the constraint

Fy = 0

−asinh 
x−b
a

 = 0

sinh


2−b
a

 = 0

The cost function in Matlab becomes

function [ J ] = cost_soap( z )
 
   a = z(1);
   b = z(2);
   
   e1 = a * cosh((0-b)/a) - 6;
   e2 = -a * sinh((1-b)/a);
   
   J = e1^2 + e2^2;
      
   end

Minimizing it

>> [Z,e] = fminsearch('cost_soap',[1,2])

          a          b

Z =    0.2614    1.0000

e =  1.9957e-009

>> a = Z(1);
>> b = Z(2);
>> x = [0:0.01:2]';
>> y = a*cosh((x-b)/a);
>> plot(x,y,'b',[1,1],[0,5],'r--')
>> 



Hanging Chain

3)  Calculate the shape of a hanging chain subject to the following constraints

Length of chain = 4 meters

Left Endpoint:  (0,6)

Right Endpoint: (2,5)

 

The functional a hanging chain minimizes is

F = x 1 + (y )
2

+ M 1 + (y )
2

The solution (from lecture notes) is

y = a cosh 
x−b
a

 − M

Plugging in the endpoint constraints

6 = a cosh 
0−b

a

 − M

5 = a cosh 
2−b

a

 − M

The length constraint gives


a sinh 

x−b
a





0

2

= 4



Solving using Matlab

function [ J ] = cost_roap( z )
 
   a = z(1);
   b = z(2);
   M = z(3);
   
   e1 = a * cosh((0-b)/a) - M - 6;
   e2 = a * cosh((2-b)/a) - M - 5;
   e3 = a*sinh((2-b)/a) - a*sinh((0-b)/a) - 4;
   
   J = e1^2 + e2^2 + e3^2;
   
   x = [0:0.01:2];
   y = a*cosh( (x-b)/a ) - M;
   plot(x,y);
    pause(0.01);
      
   end

>> [Z,e] = fminsearch('cost_roap',[1,2,3])

          a          b        M
Z =    0.4717    1.1205   -3.4415

e =  1.2132e-008

Result:

y = 0.4717 ⋅ cosh 
x−1.1205

0.4717

 + 3.4416



Ricatti Equation

4) Find the function, x(t), which minimizes the following funcional

x(0) = 6 x(10) = 4J = ∫0
10

(x2 + 9x
.
2
)dt

The funcitonal is

F = x2 + 9x
.
2

Solving the Euler LaGrange equation

d

dt
(Fx ) − Fx = 0

d

dt
(18x

.
) − 2x = 0

18ẍ − 2x = 0

Using LaPlace notation

9s2X − X = 0

s = ±
1

3

x(t) = aet/3 + be−t/3

Plugging in the endpoint constraints

x(0) = 6 = a + b

x(10) = 4 = 28.03a + 0.03567b

Solving

a = 0.1352 b = 5.8648



5) Find the function, x(t), which minimizes the following funcional

J = ∫0
8

(4x2 + 9u2
)dt

x
.

= −0.2x + u

x(0) = 6

x(10) = 4

The functional is

F = 4x2 + 9u2 + m(−0.2x + u − x
.
)

This results in three Euler LaGrange equations

With respect to x

d

dt
(Fx ) − Fx = 0

d

dt
(−m) − (8x − 0.2m) = 0

−m
.

− 8x + 0.2m = 0

With respect to u

d

dt
(Fu ) − Fu = 0

d

dt
(0) − (18u + m) = 0

With respect to m

d

dt
(Fm ) − Fm = 0

−(−0.2x + u − x
.
) = 0

Solving

m = −18u

u = x
.

+ 0.2x

−m
.

− 8x + 0.2m = 0

−(−18u
.
) − 8x + 0.2(−18u) = 0

18(ẍ + 0.2x
.
) − 8x − 3.6(x

.
+ 0.2x) = 0

ẍ − 0.4844x = 0

Using LaPlace notation

(s2 − 0.4844)X − 0

s = ±0.6960



and

x(t) = ae0.6960t + be−0.6960t

Plugging in the endpoints

x(0) = 6 = a + b

x(10) = 4 = 1053.8a + 0.000949b

solving

a = 0.0038

b = 5.9962

x(t) = 0.0038 ⋅ e0.6960t + 5.9962 ⋅ e−0.6969t



LQG Control

6)  Cart & Pendulum (HW #6):  Design a full-state feedback control law of the form

U = KrR − KxX

for the cart and pendulum system from homework #6 using LQG control so that

The DC gain is 1.00

The 2% settling time is 6 seconds, and

There is less than 10% overshoot for a step input.

The desired closed-loop dominant pole should be at about

s = −0.67 + j0.91

for the desired transfer function (2nd order approximation)

Gd = 


1.27

s2+1.33s+1.27




It's kind of subjective, but what I would up with is

Kx = lqr(A, B, diag([30,0,0,0]), 1);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;

Kx =   -5.4772 -126.2762   -9.2941  -24.8375

>> eig(A - B*Kx)

  -7.0000 + 0.3135i
  -7.0000 - 0.3135i
  -0.7717 + 0.7055i
  -0.7717 - 0.7055i

Kr =   -5.4772



Compare your results with homework #6

Where are the closed-loop poles with pole placement and with LQG control?

Are the feedback gains larger or smaller with LQG control?

Which one works better?

In homework #6, I placed the poles

>> Kx = ppl(A, B, [-0.5+j*0.54, -0.5-j*0.54, -3, -4])

Kx =   -0.6632  -69.2048   -1.6113   -9.6113

The gains are similar - slightly larger with LQR.  But then the system is slightly faster (dominant poles

at -0.77 + j0.7) 

Changing Q so that the dominant pole is about the same spot

>> Kx = lqr(A, B, diag([6,0,0,0]), 1);

Kx =   -2.4495 -115.0882   -5.7478  -20.7570

eig(A - B*Kx)

  -7.0000 + 0.1400i
  -7.0000 - 0.1400i
  -0.5046 + 0.4848i
  -0.5046 - 0.4848i

For a "fair" comparison, LQR gave slightly larger gains.  They're pretty close however



7)  Ball and Beam (HW #6):   Design a full-state feedback control law of the form

U = KrR − KxX

for the ball and beam system from homework #6 using LQG control so that

The DC gain is 1.00

The 2% settling time is 6 seconds, and

There is less than 10% overshoot for a step input.

 
Kx = lqr(A, B, diag([1,400,0,0]), 1);
Kx =  -9.9010   38.7983   -7.4456   13.9281

DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
Kr =   -5.0010

>> eig(A - B*Kx)

ans =

  -1.6553 + 1.6553i
  -1.6553 - 1.6553i
  -1.1303 + 1.1303i
  -1.1303 - 1.1303i

in contrast with pole placement

>> Kx = ppl(A, B, [-0.5+j*0.54, -0.5-j*0.54, -3, -4])

Kx =   -7.2211   48.8540   -5.6397   20.0000


