ECE 463/663 - Homework #9

Calculus of Variations. LQG Control. Due Monday, April 7th

Soap Film

1) Calculate the shape of a soap film connecting two rings around the X axis:

Y(0)=6
Y2)=5

The shape of a soap film minimizes the following functional

F=y 1+’

From the lecture notes, the solution is of the form

y=a- cosh (%)

Plugging in the two endpoints gives 2 equations for 2 unknowns

6=a- cosh (%)

5=a-cosh (%)

Solving using fminsearch and Matlab - first create a cost function

function [ J ] = cost_soap( z )
a = z(1);
b = 2z(2);
el = a * cosh((0-b)/a) - 6;
e2 = a * cosh((2-b)/a) - 5;

J = el™2 + e2"2;

end

Now solve using Matlab:

>> [Z,e] = fminsearch('cost_soap', [1,2])
a b
Z = 4.8223 3.3052

5.2301e-010

(0]
Il

>>



Plotting:

>> a = 7Z(1);

>> b = Z2(2);

>> x = [0:0.01:21";

>> y = a*cosh((x-b)/a);

>> plot(x,Vy);
>> y1im ([0, 7])
>>




2) Calculate the shape of a soap film connecting two rings around the X axis:

- Y0)=6
« Y(2)=free
The shape of a soap film minimizes the following functional

F=y 1+’

From the lecture notes, the solution is of the form
y=a-cosh (%)

Plugging in the left endpoint
6 =a- cosh (%)

The right endpoint satisfies the constraint

Fy/==0
—asinh (%) =0
sinh (%) =0

The cost function in Matlab becomes

function [ J ] = cost_soap( z )
a = z(1);
b =2z(2);
el = a * cosh((0-b)/a) - 6;
e2 = —a * sinh((1-b)/a);

J = el™2 + e2"2;
end

Minimizing it

>> [Z,e] = fminsearch('cost_socap',[1,2])
a b

Z = 0.2614 1.0000

e = 1.9957e-009

>> a = zZ(1);

>> b = Z(2);

>> x = [0:0.01:2]";

>> y = a*cosh((x-b)/a);

>> plot (x,y, 'b", [1,1],[0,5], "r—=")

>>




Hanging Chain
3) Calculate the shape of a hanging chain subject to the following constraints

Length of chain = 4 meters
Left Endpoint: (0,6)
« Right Endpoint: (2,5)

The functional a hanging chain minimizes is

F=x|1+(/)" +M|1+()’
The solution (from lecture notes) is

y =acosh (%) -M
Plugging in the endpoint constraints

6 = acosh (Oa;b) -M

5 =acosh (#) -M

The length constraint gives

(a sinh (;b))z =4



Solving using Matlab

function [ J ] = cost_roap( z )
a = z(1);
b = 2z(2);
M = z(3);
el = a * cosh((0 - -

b)/a) M 6;
e2 = a * cosh(( b)/a) - M - 5;
e3 a*sinh ( (2 )/a) - a*sinh ((0-b)/a) - 4;

J = el”2 + e2™2 + e3"2;

x = [0:0.01: 2]

y = a*cosh( (x-b)/a ) - M;
plot (x,vy);

pause (0.01);

end
>> [Z,e] = fminsearch('cost_roap', [1,2,3])
a b M
7 = 0.4717 1.1205 -3.4415
e = 1.2132e-008
Result:

y=0.4717 - cosh(x112°5)+3.4416

0.4717

35 | | | | | | | | |
o




Ricatti Equation

4) Find the function, x(t), which minimizes the following funcional

10 .
J= jo (X2 +9x%)dt x(0)=6
The funcitonal is
F = x% + 9x?
Solving the Euler LaGrange equation
d
F(F)=Fx=0
d : _
+(18x)-2x=0
18x—-2x=0
Using LaPlace notation
9s2X-X=0
.
S= i3
x(t) = ae'’? + be "3

Plugging in the endpoint constraints

x(0O)=6=a+b
x(10)=4=28.03a+0.03567b
Solving

a=0.1352 b=5.8648

x(10)=4




5) Find the function, x(t), which minimizes the following funcional
8
J= JO (4x* +9u?)dt

x=-0.2x+u

x(0)=6

x(10) =4
The functional is

F=4x%*+9u? + m(-0.2x+ u—Xx)
This results in three Euler LaGrange equations

With respect to x

d

E(Fx’) - Fx =0

2(-m) - (8x—0.2m) =0

-m-8x+0.2m=0
With respect to u

d

E(Fu’) - Fu =0

d

E(O)—(18u+m) =0
With respect to m

d

E(Fm’) - Fm =0

—(-0.2x+u-x)=0

Solving
m=-18u
u=x+0.2x

-m-8x+0.2m=0
—(—18U)—8x+0.2(-18u) =0

18(% +0.2%) — 8x — 3.6(x+0.2x) =0
x—0.4844x=0

Using LaPlace notation
(s2—0.4844)X-0
s =10.6960



and

Plugging in the endpoints

x(0)=6=a+b

x(10) =4=1053.8a+0.000949b
solving

a=0.0038

b =5.9962

x(t) =0.0038 - %690t 1 5 996472 . @~0-696%¢




LQG Control
6) Cart & Pendulum (HW #6): Design a full-state feedback control law of the form
U = KrR - Kxx

for the cart and pendulum system from homework #6 using LQG control so that

« The DC gain is 1.00
« The 2% settling time is 6 seconds, and
« There is less than 10% overshoot for a step input.

The desired closed-loop dominant pole should be at about
s =-0.67 +;0.91

for the desired transfer function (2nd order approximation)

1.27
d $2+1.335+1.27

It's kind of subjective, but what I would up with is

Kx = lgr (A, B, diag([30,0,0,01), 1);

DC = —-C*inv (A-B*Kx) *B;

Kr = 1/DC;

Kx = -5.4772 -126.2762 -9.2941 -24.8375

>> eig (A - B*Kx)

.0000
.0000
L1717
L1717

0.31351
0.31351
0.70551
0.70551

|
O O I
I+ 1+

Kr = -5.4772
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Compare your results with homework #6

«  Where are the closed-loop poles with pole placement and with LQG control?
+ Are the feedback gains larger or smaller with LQG control?
«  Which one works better?

In homework #6, I placed the poles

>> Kx = ppl(A, B, [-0.5+3*0.54, —-0.5-3*0.54, -3, —-4])

Kx = -0.6632 -69.2048 -1.6113 -9.6113

The gains are similar - slightly larger with LQR. But then the system is slightly faster (dominant poles
at -0.77 +j0.7)

Changing Q so that the dominant pole is about the same spot

>> Kx = 1lqr (A, B, diag([6,0,0,0]), 1);

Kx = -2.4495 -115.0882 -5.7478 -20.7570

eig (A - B*Kx)

-7.0000 + 0.14001
-7.0000 - 0.14001
-0.5046 + 0.48481
-0.5046 - 0.48481

For a "fair" comparison, LQR gave slightly larger gains. They're pretty close however



7) Ball and Beam (HW #6): Design a full-state feedback control law of the form
U=K.R-—KX

for the ball and beam system from homework #6 using LQG control so that

« The DC gain is 1.00
« The 2% settling time is 6 seconds, and
« There is less than 10% overshoot for a step input.

Kx
Kx

DC
Kr
Kr

lgr (A, B, diag([1,400,0,0]), 1);
-9.9010

—C*inv (A-B*Kx) *B;
1/DC;
-5.0010

38.7983

>> eig (A - B*Kx)

in contrast with pole placement
= ppl (A, B,

>> Kx

Kx =

.6553
.6553
.1303
.1303

-7.2211

I+ 1+

e

.65531
.65531
.13031
1.

13031

48.8540

-7.4456 13.9281

[-0.5+3J*0.54, -0.5-3*0.54, -3, -41)

-5.6397 20.0000

0.4
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