
ECE 463/663 - Test #2: Name

Due midnight Sunday, March 27th. Individual Effort Only (no working in groups)

The linearized dynamics for a double gantry system are:

ſ	X		0	0	0	1	0	0	x		0		0]
S	θ_1	=	0	0	0	0	1	0	θ_1	+ 0 1		0		
	θ_2		0	0	0	0	0	1	θ2		0	F+	0	d
	ż		0	2g	0	0	0	0	ż		1		1	
	$\dot{\theta}_1$		0	-3g	g	0	0	0			-1		-1	
	θ ₂		0	3g	-3g	0	0	0	θ ₂		1		_ 1 _	

C Level (max 80 points)

Design a feedback control law for the double pendulum assuming

- All states are measured (no observer is needed)
- A sinusoidal set point (R(t) = sin(0.5t)), and
- A constant disturbance (d(t) = 5)

Validate your feedback control law on the linear system

Validate your feedback control law on the nonlinear system (Gantry2)

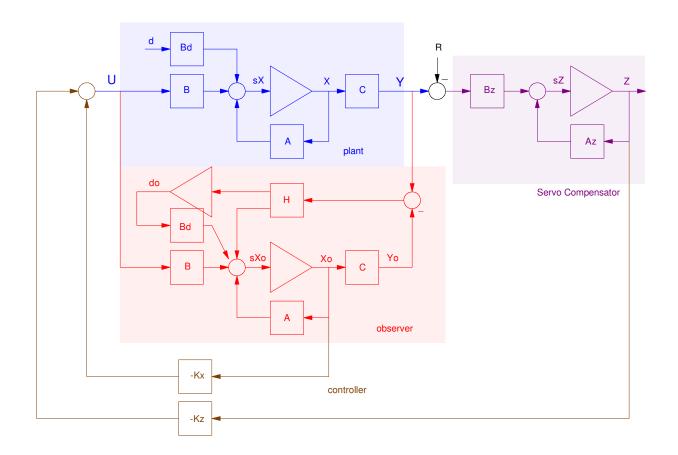
B Level (max 90 points)

Design a feedback control law for the double pendulum assuming

- Only position and angles are measured, (observer is required)
- A sinusoidal set point (R(t) = sin(0.5t)), and
- No disturbance (d(t) = 0)

Validate your feedback control law on the linear system

Validate your feedback control law on the nonlinear system (Gantry2)


A Level (max 100 points)

Design a feedback control law for the double pendulum assuming

- Only position and angles are measured, (observer is required)
- A sinusoidal set point (R(t) = sin(0.5t)), and
- A constant disturbance (d(t) = 5)

Validate your feedback control law on the linear system

Validate your feedback control law on the nonlinear system (Gantry2)

Block diagram for the Plant, Servo Compensator, Disturbance, Observer, and Full-State Feedback