
ECE 463/663 - Homework #9
Calculus of Variations. LQG Control. Due Wednesday, April 4th, 2022

Soap Film

1) Calculate the shape of a soap film connecting two rings around the X axis:

Y(0) = 10

Y(4) = 9

From the lecture notes, a soap film minimizes the surface area. The corresponding funtional is

J = ∫ y 1 + y 2
 dx

which has the solution

y = a ⋅ cosh
x−b
a

Plugging in the two endpoints to solve for a and b

10 = a ⋅ cosh
−b
a

9 = a ⋅ cosh
4−b
a

Solving in Matlab, first create a cost function

function [J] = soap(z)

 a = z(1);

 b = z(2);

 e1 = a*cosh(-b/a) - 10;

 e2 = a*cosh((4-b)/a) - 9;

 J = e1^2 + e2^2;

 end

Solve using fminsearch:

>> [z,e] = fminsearch('soap',[1,2])
 a b
z = 0.5710 2.0301
e = 1.7898e-006

meaning

y = 0.5710 ⋅ cosh
x−2.0301

0.5710

2) Calculate the shape of a soap film connecting two rings around the X axis:

Y(0) = 10

Y(2) = free

From the lecture notes,

y = a ⋅ cosh
x−b
a

The endpoint constraint is

10 = a ⋅ cosh
−b
a

The right endpoint constraint is

y = −sinh
2−b
a

 = 0

Setting up a cost funiton in Matlab

function [J] = soap(z)
 a = z(1);
 b = z(2);
 e1 = a*cosh(-b/a) - 10;
 e2 = sinh((2-b)/a);
 J = e1^2 + e2^2;
 end

Solving

>> [z,e] = fminsearch('soap',[1,2])

 a b
z = 0.5593 2.0000
e = 5.6278e-009

so

y = 0.5593 ⋅ cosh
x−2

0.5593

>> a = z(1);
>> b = z(2);
>> y = a * cosh((x-b)/a);
>> plot(x,y);
>> plot(x,y,[2,2],[0,10],'r--');

Hanging Chain

3) Calculate the shape of a hanging chain subject to the following constraints

Length of chain = 12 meters

Left Endpoint: (0,0)

Right Endpoint: (10,1)

From the lecture notes, a hanging chain

Minimes the potential energy,

With the constraint that the total lenngth is 12 meters

The corresponding funcitonal is

F = x 1 + y 2 + M 1 + y 2

which results in the solution

y = a ⋅ cosh
x−b
a

 − M

a ⋅ sinh

x−b
a

0

10

= 12

Set up a cost function

function J = chain(z)
a = z(1);
b = z(2);
M = z(3);

Length = 12;
x1 = 0;
y1 = 0;

x2 = 10;
y2 = 1;

e1 = a*cosh((x1-b)/a) - M - y1;
e2 = a*cosh((x2-b)/a) - M - y2;
e3 = a*sinh((x2-b)/a) - a*sinh((x1-b)/a) - Length;

J = e1^2 + e2^2 + e3^2;

end

Solve

>> [z,e] = fminsearch('chain',[1,2,3])

 a b M
z = 4.7425 4.6039 7.1583

e = 2.9425e-009

plotting the shape

>> a = z(1);
>> b = z(2);
>> M = z(3);
>> x = [0:0.01:10]';
>> y = a*cosh((x-b)/a) - M;
>> plot(x,y);
>> ylim([-5,1])

Ricatti Equation

4) Find the function, x(t), which minimizes the following funcional

J = ∫0
10

(x2 + 4x
.
2
)dt

x(0) = 6

x(10) = 4

Any funciton that minimizes this functional must minimize the Euler LaGrange equation

Fx −
d

dt
(Fx) = 0

Solving

2x −
d

dt
(8x
.
) = 0

4ẍ + x = 0

(4s2 + 1)x = 0

Either

x = 0, or

s = {+0.5, -0.5}

going with the latter solution

x(t) = ae0.5t + be−0.5t

Plugging in the endpoint constraints

x(0) = 6 = a + b

x(10) = 4 = ae5 + be−5

Solving 2 equations for 2 unknowns

>> A = [1,1 ; exp(5),exp(-5)]

 1.0000 1.0000
 148.4132 0.0067

>> B = [6;4]

 6
 4

>> ab = inv(A)*B

a 0.0267
b 5.9733

x(t) = 0.0267e0.5t + 5.9733e−0.5t

Plotting x(t)

>> a = ab(1);
>> b = ab(2);
>> t = [0:0.01:10]';
>> x = a*exp(t/2) + b*exp(-t/2);
>> plot(t,x);
>> xlabel('Time');

5) Find the function, x(t), which minimizes the following funcional

J = ∫0
10

(x2 + 9u2
)dt

x
.

= −0.1x + u

x(0) = 6

x(10) = 4

The functional for this problem (including a LaGrange multiplier) is

F = (x2 + 9u2
) + m(x

.
+ 0.1x − u)

Solving three Euler LaGrange equations

Fx −
d

dt
(Fx) = 0

(2x + 0.1m) −
d

dt
(m) = 0

(1) 2x + 0.1m − m
.

= 0

Fu −
d

dt
(Fu) = 0

(2) 18u − m = 0

Fm −
d

dt
(Fm) = 0

(3) x
.

+ 0.1x − u = 0

Substituting

m = 18u

2x + 1.8u − 18u
.

= 0

u = x
.

+ 0.1x

u
.

= ẍ + 0.1x
.

2x + 1.8(x
.

+ 0.1x) − 18(ẍ + 0.1x
.
) = 0

Simplifying

−18ẍ + 2.18x = 0

(−18s2 + 2.18)x = 0

meaning

s = {0.3480, -0.3480}

and

x(t) = a ⋅ e0.3480t + b ⋅ e−0.3480t

Plugging in the endpoints

x(0) = 6 = a + b

x(10) = 4 = a ⋅ e3.480 + b ⋅ e−3.480

Solving

>> s = roots([-18,0,2.18])

 0.3480
 -0.3480

>> A = [1,1 ; exp(s(1)*10),exp(s(2)*10)]

 1.0000 1.0000
 32.4630 0.0308

>> B = [6;4];
>> ab = inv(A)*B

 0.1176
 5.8824

>> t = [0:0.01:10]';
>> a = ab(1);
>> b = ab(2);
>> x = a*exp(s1*t) + b*exp(s2*t);
>> plot(t,x);
>> xlabel('Time');

LQG Control

6) Cart & Pendulum (HW #4 & HW#6):

s

x

θ

sx

sθ

=

0 0 1 0

0 0 0 1

0 −14.7 0 0

0 24.5 0 0

x

θ

sx

sθ

+

0

0

0.5

−0.5

F

Design a full-state feedback control law of the form

F = U = KrR − KxX

for the cart and pendulum system from homework #4 using LQG control so that

The DC gain is 1.00

The 2% settling time is 8 seconds, and

There is less than 10% overshoot for a step input.

>> A = [0,0,1,0 ; 0,0,0,1 ; 0,-14.7,0,0 ; 0,24.5,0,0];
>> B = [0;0;0.5;-0.5];
>> C = [1,0,0,0];
>> D = 0;

Guess #1: J = x2 + u2

>> Kx = lqr(A, B, diag([1,0,0,0]), 1);
>> eig(A - B*Kx)

 -4.9496 + 0.0303i
 -4.9496 - 0.0303i
 -0.3182 + 0.3143i
 -0.3182 - 0.3143i

Too slow: Increase the weighting on x:

>> Kx = lqr(A, B, diag([10,0,0,0]), 1);
>> eig(A - B*Kx)

 -4.9482 + 0.0959i
 -4.9482 - 0.0959i
 -0.5732 + 0.5514i
 -0.5732 - 0.5514i

Good enough.

>> DC = -C*inv(A - B*Kx)*B

DC = -0.3162

>> Kr = 1/DC

Kr = -3.1623

Plotting the step response

>> G = ss(A-B*Kx, B*Kr, C, D);
>> t = [0:0.01:10]';
>> y = step(G,t);
>> plot(t,y);

Compare your results with homework #6

Where are the closed-loop poles with pole placement and with LQG control?

Are the feedback gains larger or smaller with LQG control?

Which one works better?

Kx6 = ppl(A, B, [-0.5+j*0.6, -0.5-j*0.6, -2, -3])

ppl: Kx6 = -0.7469 -72.9669 -1.8469 -13.8469
lqr: Kx = -3.1623 -125.1059 -7.0083 -29.0939

Closed-Loop Poles

>> [eig(A-B*Kx), eig(A-B*Kx6)]

 -4.9482 + 0.0959i -3.0000
 -4.9482 - 0.0959i -2.0000
 -0.5732 + 0.5514i -0.5000 + 0.6000i
 -0.5732 - 0.5514i -0.5000 - 0.6000i

7) Ball and Beam (HW #4 & HW#6):

s

r

θ

r
.

θ
.

=

0 0 1 0

0 0 0 1

0 −7 0 0

−4.2 0 0 0

r

θ

r
.

θ
.

+

0

0

0

0.143

T

Design a full-state feedback control law of the form

T = U = KrR − KxX

for the ball and beam system from homework #4 using LQG control so that

The DC gain is 1.00

The 2% settling time is 8 seconds, and

There is less than 10% overshoot for a step input.

Use trial and error - adjusting the gains of Q until

Start with Q = diag([1 0 0 0])

Reduce the oscillations: Q = diag([1 0 200 0])

Reduce the osicllations some more; Q = diag([1 0 200 1000])

Q = diag([1,0,200,1000]);
R = 1;

A = [0,0,1,0 ; 0,0,0,1 ; 0,-7,0,0 ; -4.2,0,0,0];
B = [0;0;0;0.143];
C = [1,0,0,0];
D = [0];

Kx = lqr(A, B, Q, R);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;

C = [1,0,0,0 ; 0,1,0,0];
D = [0;0];
G = ss(A-B*Kx, B*Kr, C, D);
t = [0:0.01:10]';
y = step(G,t);
plot(t,y);

Compare your results with homework #6

Where are the closed-loop poles with pole placement and with LQG control?

Are the feedback gains larger or smaller with LQG control?

Which one works better?

>> [eig(A-B*Kx), eig(A-B*Kx6)]

 LQR PPL
 -4.8246 -4.0000
 -0.9248 + 1.8249i -3.0000
 -0.9248 - 1.8249i -0.5000 + 0.6000i
 -1.4568 -0.5000 - 0.6000i

>> [Kx6 ; Kx]

PPL -36.6833 137.1329 -16.2537 55.9441
LQR -58.7583 159.6637 -39.2506 56.8600

>>

The results are about the same.

Pole placement is nice: you have complete control over where the poles go

LQR is nice: you have knobs you can adjust to get the response you want

