ECE 463/663 - Homework \#6

Pole Placement. Due Monday, February 28th

Problem 1) (30pt) Use the dynamics of a Cart and Pendulum System from homework set \#4:

$$
s\left[\begin{array}{c}
x \\
\theta \\
s x \\
s \theta
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -19.6 & 0 & 0 \\
0 & 19.6 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\theta \\
s x \\
s \theta
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0.6667 \\
-0.4444
\end{array}\right] F
$$

(10pt) Design a feedback control law of the form

$$
\mathrm{U}=\mathrm{Kr} * \mathrm{R}-\mathrm{Kx} * \mathrm{X}
$$

so that the closed-loop system has

- A 2% settling time of 10 seconds, and
- 5% overshoot for a step input

Translation:

- Place the closed loop dominant pole at $\mathrm{s}=-0.4$ (10 second settling time)
- With a damping ration of 0.6897 (5% overshoot)
- $\mathrm{s}=-0.4+\mathrm{j} 0.42$

```
>>A = [0,0,1,0;0,0,0,1;0,-19.6,0,0;0,19.6,0,0]
\begin{tabular}{rrrr}
0 & 0 & 1.0000 & 0 \\
0 & 0 & 0 & 1.0000 \\
0 & -19.6000 & 0 & 0 \\
0 & 19.6000 & 0 & 0
\end{tabular}
>> B = [0;0;0.6667;-0.4444]
        0.6667
    -0.4444
>> rank([B, A*B, A*A*B, A*A*A*B])
    4
>> P = [-0.4+j*0.42,-0.4-j*0.42,-2,-3]
>> Kx = ppl(A, B, P)
Kx = -0.4632 -68.0586 -1.4877 -15.2832
>> C = [1,0,0,0];
>> D = 0;
>> DC = -C*inv(A - B*Kx)*B;
>> Kr = 1/DC
Kr = -0.4632
```

(10pt) Check the step response of the linear system in Matlab

```
>>Gcl = SS(A-B*Kx, B*Kr, C, D);
>> t = [0:0.01:15]';
>> y = step(Gcl,t);
>> plot(t,y, t, t*0+1,'m--', t, t*0+1.05,'m--')
>> xlabel('Time (seconds)')
>> max(y)
ans=1.0490
>> xlabel('Time (seconds)');
>>
```

The design is for 5% overshoot
The actual overshoot is 4.90% (pretty close)

Step response of linear model of cart \& pendulum: 5% overshoot
(10pt) Check the step response of the nonlinear system

```
% Cart and Pendulum ( Sp23 version)
X = [0; 0 ; 0 ; 0];
dX = zeros(4,1);
Ref = 1;
dt = 0.01;
t = 0;
Kx = [l-0.4632 -68.0586 -1.4877 -15.2832];
Kr = -0.4632;
y = [];
while(t < 15)
    Ref = 1;
    U = Kr*Ref - Kx*X;
    dX = CartDynamics(X, U);
    X = X + dX * dt;
    t = t + dt;
    CartDisplay(X, Ref);
    y = [y ; X(1), Ref];
end
t = [1:length(y)]' * dt;
plot(t,y);
max(y)
ans = 1.0498 <<<< 4.98% overshoot
same overshoot as the linear model predicts
```


Step response of nonlinear model of cart \& pendulum system. 5\% overshoot

Problem 2) (30pt) Use the dynamics for the Ball and Beam system from homework set \#4.

$$
s\left[\begin{array}{c}
r \\
\theta \\
s r \\
s \theta
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -7 & 0 & 0 \\
-7.84 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
r \\
\theta \\
s r \\
s \theta
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0.4
\end{array}\right] T
$$

(10pt) Design a feedback control law so that the closed-loop system has

- A 2% settling time of 10 seconds, and
- 5% overshoot for a step input


```
>> A = [0,0,1,0;0,0,0,1;0,-7,0,0;-7.84,0,0,0]
\begin{tabular}{rrrr}
0 & 0 & 1.0000 & 0 \\
0 & 0 & 0 & 1.0000 \\
0 & -7.0000 & 0 & 0 \\
-7.8400 & 0 & 0 & 0
\end{tabular}
>> B = [0;0;0;0.4]
            0
            0
    0.4000
>> P = [-0.4+j*0.42,-0.4-j*0.42,-2,-3]
>> Kx = ppl(A, B, P)
Kx = -20.3209 25.8410 -2.3150 14.5000
>> C = [1,0,0,0];
>> D = 0;
>> DC = -C*inv(A - B*Kx)*B;
>> Kr = 1/DC
Kr = -0.7209
```

(10pt) Check the step response of the linear system in Matlab

```
>>Gcl = SS(A-B*Kx, B*Kr, C, D);
>> t = [0:0.01:15]';
>> y = step(Gcl,t);
>> plot(t,y, t, t*0+1,'m--', t, t*0+1.05,'m--')
>> xlabel('Time (seconds)')
>> max(y)
ans= 1.0465 <<<<< 4.65% overshoot
```


Step Response of Linear Model of Ball \& Beam System: 5\% Overshoot
(10pt) Check the step response of the nonlinear system

```
% Ball & Beam System
% m = 1kg
% J = 0.2 kg m^2
X = [0, 0, 0, 0]';
dt = 0.01;
t = 0;
Kx = [lllllll}-20.5817 26.1453 -2.5324 14.5000 ];
Kr = -0.9817;
n = 0;
y = [];
while(t < 15)
    Ref = 1;
        U = Kr*Ref - Kx*X;
        dX = BeamDynamics(X, U);
        X = X + dX * dt;
        t = t + dt;
        y = [y ; Ref, X(1)];
        n = mod(n+1,5);
        if(n == 0)
            BeamDisplay(X, Ref);
            end
        end
t = [1:length(y)]' * dt;
plot(t,y(:,1),'r',t,y(:,2),'b');
xlabel('Time (seconds)');
ylabel('Ball Position');
```


Problem \#3 (30pt): The dynamics of a double gantry (Gantry2) are

$$
s\left[\begin{array}{c}
x \\
\theta_{1} \\
\theta_{2} \\
\dot{x} \\
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 2 g & 0 & 0 & 0 & 0 \\
0 & -3 g & g & 0 & 0 & 0 \\
0 & 3 g & -3 g & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\theta_{1} \\
\theta_{2} \\
\dot{x} \\
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-1 \\
1
\end{array}\right] F
$$

(10pt) Design a feedback control law of the form

$$
\mathrm{U}=\mathrm{Kr} * \mathrm{R}-\mathrm{Kx} * \mathrm{X}
$$

so that the closed-loop system has

- A 2% settling time of 10 seconds, and
- 5\% overshoot for a step input

```
>> Z = zeros(3,3);
>> I = eye (3,3);
>> g = 9.8;
>> K = [0,2,0;0,-3,1;0,3,-3]*g;
>> A = [Z,I ; K,Z]
```

0	0	0	1.0000	0	0
0	0	0	0	1.0000	0
0	0	0	0	0	1.0000
0	19.6000	0	0	0	0
0	-29.4000	9.8000	0	0	0
0	29.4000	-29.4000	0	0	0

```
>> eig(A)
            0
    0.0000 + 6.8099i
    0.0000 - 6.8099i
    0.0000 + 3.5250i
    0.0000 - 3.5250i
>> B = [0;0;0;1;-1;1]
    0
    0
    0
    1
    -1
    1
>> rank([B,A*B,A^2*B,A^3*B,A^4*B,A^5*B])
ans =
                    6
>> P = [-0.4+j*0.42,-0.4-j*0.42,-2,-3,-4,-5];
>> Kx = ppl(A, B, P)
Kx = 0.2102 16.1936 39.7198 0.7695 0.9.4564 4.5741
>> eig(A - B*Kx)
    -5.0000
    -4.0000
    -3.0000
    -2.0000
    -0.4000 + 0.4200i
    -0.4000 - 0.4200i
>> C = [1,0,0,0,0,0];
>> D = 0;
>> DC = -C*inv(A - B*Kx)*B;
>> Kr = 1/DC
Kr = 0.2102
```

(10pt) Determine the step response of the linear system in Matlab

```
>>Gcl = ss(A-B*Kx, B*Kr, C, D);
>> t = [0:0.01:15]';
>> y = step (Gcl,t);
>> plot(t,y,t,0*t+1,'m--',t,0*t+1.05,'m--')
>> xlabel('Time (seconds)');
>>
```


(10pt) Determine the step response of the nonlinear system

```
X = [0, 0, 0, 0, 0, 0]';
Ref = 1;
dt = 0.01;
U = 0;
t = 0;
Kx = [llllllllll
Kr = 0.2102;
y = [];
n = 0;
while(t < 15)
    Ref = 1;
    U = Kr*Ref - Kx*X;
    dX = Gantry2Dynamics(X, U);
    X = X + dX * dt;
    t = t + dt;
    n = mod(n+1,5);
    if(n == 0)
        Gantry2Display(X, Ref);
        plot([Ref, Ref],[-0.1,0.1],'b');
        end
    y = [y ; Ref, X(1), X(2), X(3)];
end
pause(2);
t = [1:length(y)]' * dt;
plot(t,y);
xlabel('Time (seconds)');
```


