ECE 463/663 - Homework \#7

Servo Compensators. Due Monday, March 6th
Please submit as a hard copy, email to jacob.glower@ndsu.edu, or submit on BlackBoard

The dynamics of a Ball and Beam System (homework set \#4) with a disturbance are

$$
s\left[\begin{array}{c}
r \\
\theta \\
\dot{r} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -7 & 0 & 0 \\
-7.84 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
r \\
\theta \\
\dot{r} \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0.4
\end{array}\right] T+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0.4
\end{array}\right] d
$$

Full-State Feedback with Constant Disturbances

1) For the nonlinear simulation, use the feedback control law you computed in homework \#6

- With $\mathrm{R}=1$ and the mass of the ball $=2.0 \mathrm{~kg}$ (same result you got for homework \#6), and
- With $\mathrm{R}=1$ and the mass of the ball decreased to 1.5 kg
(i.e. a constant disturbance on the system due to a different mass of the ball)

Start with finding Kx and Kr :

```
>> A = [0,0,1,0;0,0,0,1;0,-7,0,0;-7.84,0,0,0]
\begin{tabular}{rrrr}
0 & 0 & 1.0000 & 0 \\
0 & 0 & 0 & 1.0000 \\
0 & -7.0000 & 0 & 0 \\
-7.8400 & 0 & 0 & 0
\end{tabular}
>> B = [0;0;0;0.4]
        的
>> C = [1,0,0,0];
>> Kx = ppl(A, B, [-0.4+j*0.42,-0.4-j*0.42,-2,-3])
Kx = -20.3209 25.8410 -2.3150 14.5000
```

```
>> eig(A - B*Kx)
    -3.0000
    -2.0000
    -0.4000 + 0.4200i
    -0.4000 - 0.4200i
>> DC = -C*inv(A - B*Kx)*B
>> Kr = 1/DC
Kr = -0.7209
```

Now apply that to the ball \& beam system with $\mathrm{m}=2.0 \mathrm{~kg}$

$\mathrm{m}=2.0 \mathrm{~kg}$. Tracks the set point

Step Response with $\mathrm{m}=2.0 \mathrm{~kg}$

Next, repeat with $\mathrm{m}=1.5 \mathrm{~kg}$

Step Response with , $\mathrm{m}=1.5 \mathrm{~kg}$ (unstable)
The closed-loop system is unstable. Changing the mass to 1.9 kg , it misses the target (doesn't go to 1.00)

Step Response with $\mathrm{m}=1.9 \mathrm{~kg}$ (misses the target)

Servo Compensators with Constant Set-Points

2) Assume a constant disturbance and/or a constant set point. Design a feedback control law that results in

- The ability to track a constant set point ($\mathrm{R}=$ constant)
- The ability to reject a constant disturbance ($\mathrm{d}=$ constant),
- A 2% settling time of 10 seconds, and
- No overshoot for a step input.

First, form the augmented system:
$\gg A 5=[A, \operatorname{zeros}(4,1) ; C, 0]$

0	0	1.0000	0	0
0	0	0	1.0000	0
0	-7.0000	0	0	0
-7.8400	0	0	0	0
1.0000	0	0	0	0

>> B5u = $[B ; 0]$
0
0
0
0.4000
>> B5r = [zeros (4,1);-1]
0
0
0
-1

Now find the feedback gains to meet the requirements (a little trial and error)

```
>> K5 = ppl(A5, B5u, [-0.4+j*0.25,-0.4-j*0.25,-2,-3,-4])
K5 = -28.5232 83.5562 -16.7152 24.5000 -1.9071
```

3) For the linear system, plot the step response with respect to R and d
```
>>G5 = ss(A5 - B5u*K5, B5r, C5, D5);
>> Y = step (G5,t);
>> plot(t,y,'b',t,0*y+1,'m--')
```


Step Response with respect to R (tracks a constant set point)

```
>>G5 = SS(A5 - B5u*K5, B5u, C5, D5);
>> Y = step (G5,t);
>> plot(t,y,'b',t,O*y,'m--')
```


Step Response with Respect to d (rejects a constant disturbance)
4) Implement your control law on the nonlinear ball and beam system

- With $\mathrm{R}=1$ and the mass of the ball being 2.0 kg , and
- With $\mathrm{R}=1$ and the mass of the ball being 1.5 kg

Step Response: $\mathrm{m}=2.0 \mathrm{~kg}$ (tracks a constant set point)

Step Response ($\mathrm{m}=1.9 \mathrm{~kg}$)
(tracks a constant set point, rejects a constant disturbance)

Servo Compensators with Sinulsoidal Set-Points

5) Assume a $0.6 \mathrm{rad} / \mathrm{sec}$ disturbance and/or set point (R). Design a feedback control law that results in

- The ability to track a constant set point $(\mathrm{R}=\sin (0.6 \mathrm{t}))$
- The ability to reject a constant disturbance $(d=\sin (0.6 t))$,
- A 2% settling time of 10 seconds

Form the augmented system:

```
>>Az = [0,0.6;-0.6,0]
    0 0.6000
    -0.6000
>> Bz = [1;1]
    1
>> A6 = [A, zeros(4,2) ; Bz*C,Az]
\begin{tabular}{rrrrrr}
0 & 0 & 1.000 & 0 & 0 & 0 \\
0 & 0 & 0 & 1.0000 & 0 & 0 \\
0 & -7.000 & 0 & 0 & 0 & 0 \\
-7.8400 & 0 & 0 & 0 & 0 & 0 \\
1.0000 & 0 & 0 & 0 & 0 & 0.6000 \\
1.0000 & 0 & 0 & 0 & -0.6000 & 0
\end{tabular}
>> B6u = [B ; 0*Bz]
    0
    0.4000
        0
```

```
>> B6r = [0*B ; -Bz]
    0
    0
    0
    0
    -1
    -1
>> C6 = [1,0,0,0,0,0];
>> D6 = 0;
>> K6 = ppl(A6, B6u, [-0.4,-0.4,-2,-3,-4,-5])
K6 = - 99.9714 205.0000 -74.1829 37.0000 10.2072 -26.5871
>> Kx = K6(1:4)
Kx = -99.9714 205.0000 -74.1829 37.0000
>> Kz = K6(5:6)
Kz = 10.2072 -26.5871
```

6) For the linear system, plot the response

- With $R(t)=\sin (0.6 \mathrm{t})$, and
- With $\mathrm{d}(\mathrm{t})=\sin (0.6 \mathrm{t})$

```
>> X0 = zeros(6,1);
>> t = [0:0.01:20]';
>> R = sin(0.6*t);
>> y = step3(A6-B6u*K6,B6r,C6,D6,t,X0,R);
>> plot(t,y,'b',t,R,'m')
>> y = step3(A6-B6u*K6,B6u,C6,D6,t,X0,R);
>> plot(t,y,'b',t,R,'m')
```


Linear System: Tracks a $0.6 \mathrm{rad} / \mathrm{sec}$ set point

Linear System: Rejects a $0.6 \mathrm{rad} / \mathrm{sec}$ disturbance
7) Implement your control law on the nonlinear ball and beam system

- With $\mathrm{R}=\sin (0.6 \mathrm{t})$ and the mass of the ball being 2.0 kg , and
- With $\mathrm{R}=\sin (0.6 \mathrm{t})$ and the mass of the ball being 1.5 kg

Nonlinear System with $\mathrm{m}=2.0 \mathrm{~kg}$
Tracks a $0.6 \mathrm{rad} / \mathrm{sec}$ set point

Nonlinear System with $\mathrm{m}=1.5 \mathrm{~kg}$
Tracks a $0.6 \mathrm{rad} / \mathrm{sec}$ set point and rejects a $0.6 \mathrm{rad} / \mathrm{sec}$ disturbance

Final Code

```
% Ball & Beam System
% ECE 463 Homework Set #6
% Spring 2023
x = [-1, 0, 0, 0]';
dt = 0.002;
t = 0;
Kx = [llllll
Kz = [10.2072 -26.5871];
z = zeros(2,1);
Az = [0,0.6;-0.6,0];
Bz = [1;1];
n = 0;
y = [];
while(t < 19)
    Ref =sin(0.6*t);
    U = -Kz*Z - Kx*X;
    dX = BeamDynamics(X, U);
    dZ = Az*Z + Bz*(X(1) - Ref);
    X = X + dX * dt;
    z = z + dz * dt;
    t = t + dt;
    y = [y ; Ref, X(1)];
    n = mod(n+1,5);
    if(n == 0)
        BeamDisplay(X, Ref);
        end
    end
t = [1:length(y)]' * dt;
plot(t,y(:,1),'r',t,y(:,2),'b');
xlabel('Time (seconds)');
ylabel('Ball Position');
```

