ECE 463/663 - Homework \#9

Calculus of Variations. LQG Control. Due Wednesday, April 3rd
Please submit as a hard copy, email to jacob.glower@ ndsu.edu, or submit on BlackBoard

Soap Film

1) Calculate the shape of a soap film connecting two rings around the X axis:

- $Y(0)=7$
- $\mathrm{Y}(4)=10$

From the lecture notes, a soap film minimizes the surface area. The corresponding funtional is

$$
J=\int\left(y \sqrt{1+\dot{y}^{2}}\right) d x
$$

which has the solution

$$
y=a \cdot \cosh \left(\frac{x-b}{a}\right)
$$

Plugging in the two endpoints to solve for a and b

$$
\begin{aligned}
& 7=a \cdot \cosh \left(\frac{-b}{a}\right) \\
& 10=a \cdot \cosh \left(\frac{4-b}{a}\right)
\end{aligned}
$$

Solving in Matlab, first create a cost function

```
function [J] = soap(z)
    a = z(1);
    b = z(2);
    e1 = a* cosh(-b/a) - 7;
    e2 = a*cosh((4-b)/a) - 10;
    J = e1^2 + e2^2;
    end
```

Solve using fminsearch:

```
>> [z,e] = fminsearch('soap',[1,2])
z = 0.6017 1.8924
e = 4.4168e-007
```

meaning

$$
y=0.6017 \cdot \cosh \left(\frac{x-1.8924}{0.6017}\right)
$$

2) Calculate the shape of a soap film connecting two rings around the X axis:

- $\mathrm{Y}(0)=7$
- $Y(2)=$ free

From the lecture notes,

$$
y=a \cdot \cosh \left(\frac{x-b}{a}\right)
$$

The endpoint constraint is

$$
7=a \cdot \cosh \left(\frac{-b}{a}\right)
$$

The right endpoint constraint is

$$
y^{\prime}=-\sinh \left(\frac{2-b}{a}\right)=0
$$

Setting up a cost funiton in Matlab

```
function [J] = soap(z)
    a = z(1);
    b = z(2);
    e1 = a*cosh(-b/a) - 7;
    e2 = sinh((2-b)/a);
    J = e1^2 + e2^2;
    end
```

Solving

```
>> [z,e] = fminsearch('soap',[1,2])
z=}\begin{array}{c}{\mathrm{ a cocob}}\\{0.6529}
e=6.7418e-009
```

so

```
>> a = z(1);
>> b = z(2);
>> y = a * cosh( (x-b)/a );
>> plot(x,y);
>> plot(x,y,[2,2],[0,10],'r--');
```


Hanging Chain

3) Calculate the shape of a hanging chain subject to the following constraints

- Length of chain $=13$ meters
- Left Endpoint: $(0,7)$
- Right Endpoint: $(10,5)$

From the lecture notes, a hanging chain

- Minimizes the potential energy,
- With the constraint that the total lenngth is 12 meters

The corresponding funcitonal is

$$
F=x \sqrt{1+\dot{y}^{2}}+M \sqrt{1+\dot{y}^{2}}
$$

which results in the solution

$$
\begin{aligned}
& y=a \cdot \cosh \left(\frac{x-b}{a}\right)-M \\
& \left(a \cdot \sinh \left(\frac{x-b}{a}\right)\right)_{0}^{10}=13
\end{aligned}
$$

Set up a cost function

```
function J = chain(z)
a = z(1);
b = z(2);
M = z(3);
Length = 13;
x1 = 0;
y1 = 7;
x2 = 10;
y2 = 5;
e1 = a*cosh((x1-b)/a) - M - y1;
e2 = a*cosh((x2-b)/a) - M - y2;
e3 = a*sinh((x2-b)/a) - a*sinh((x1-b)/a) - Length;
J = e1^2 + e2^2 + e3^2;
end
```

Solving

```
>> [z,e] = fminsearch('chain',[1,2,3])
z = 3.9805 5.6173 1.6471
e = 4.8029e-009
```

plotting the shape

```
>> a = z(1);
>> b = z(2);
>> M = z(3);
>> x = [0:0.01:10]';
>> y = a* cosh( (x-b)/a ) - M;
>> plot(x,y);
>> ylim([0,10])
```


Ricatti Equation

4) Find the function, $x(t)$, which minimizes the following funcional

$$
\begin{aligned}
& J=\int_{0}^{10}\left(2 x^{2}+5 \dot{x}^{2}\right) d t \\
& x(0)=6 \\
& x(10)=7
\end{aligned}
$$

Any funciton that minimizes this functional must minimize the Euler LaGrange equation

$$
F_{x}-\frac{d}{d t}\left(F_{x^{\prime}}\right)=0
$$

Solving

$$
\begin{aligned}
& (4 x)-\frac{d}{d t}(10 \dot{x})=0 \\
& 10 \ddot{x}-4 x=0 \\
& \left(10 s^{2}-4\right) X=0
\end{aligned}
$$

Either

- $\mathrm{x}=0$, or
- $\mathrm{s}=\{+0.6325,-0.0 .6325\}$
going with the latter solution

$$
x(t)=a e^{0.6325 t}+b e^{-0.6325 t}
$$

Plugging in the endpoint constraints

$$
\begin{aligned}
& 6=a+b \\
& 7=558.35 a+0.0018 b
\end{aligned}
$$

Solving 2 equations for 2 unknowns

```
>> A = [1,1 ; exp(5), exp(-5)]
    1.0000 1.0000
    148.4132 0.0067
>> B = [6;4]
    6
    4
>> ab = inv(A)*B
a 0.0267
b 5.9733
```

Plotting the optimal path

```
>> t = [0:0.01:10]';
>> x = a*exp(0.6325*t) + b*exp(-0.6325*t);
>> plot(t,x)
>> xlabel('seconds');
>> ylabel('x')
>> title('Optimal Path');
```


5) Find the function, $x(t)$, which minimizes the following funcional

$$
\begin{aligned}
& J=\int_{0}^{10}\left(2 x^{2}+5 u^{2}\right) d t \\
& \dot{x}=-0.2 x+u \\
& x(0)=6 \\
& x(10)=7
\end{aligned}
$$

The functional for this problem (including a LaGrange multiplier) is

$$
F=\left(2 x^{2}+5 u^{2}\right)+m(\dot{x}+0.2 x-u)
$$

Solving three Euler LaGrange equations

$$
F_{x}-\frac{d}{d t}\left(F_{x^{\prime}}\right)=0
$$

$$
(4 x+0.2 m)-\frac{d}{d t}(m)=0
$$

(1) $4 x+0.2 m-\dot{m}=0$

$$
F_{u}-\frac{d}{d t}\left(F_{u^{\prime}}\right)=0
$$

(2) $10 u-m=0$

$$
\begin{aligned}
& \quad F_{m}-\frac{d}{d t}\left(F_{m^{\prime}}\right)=0 \\
& \text { (3) } \quad \dot{x}+0.2 x-u=0
\end{aligned}
$$

Substituting

$$
\begin{aligned}
& m=10 u \\
& 4 x+2 u-10 \dot{u}=0 \\
& u=\dot{x}+0.2 x \\
& \dot{u}=\ddot{x}+0.2 \dot{x} \\
& 4 x+2(\dot{x}+0.2 x)-10(\ddot{x}+0.2 \dot{x})=0
\end{aligned}
$$

Simplifying

$$
\begin{aligned}
& -10 \ddot{x}+4.4 x=0 \\
& \left(-10 s^{2}+4.4\right) x=0
\end{aligned}
$$

meaning

$$
s=\{0.6633,-0.6633\}
$$

and

$$
x(t)=a \cdot e^{0.6633 t}+b \cdot e^{-0.6633 t}
$$

Plugging in the endpoints

$$
\begin{aligned}
& x(0)=6=a+b \\
& x(10)=7=a \cdot e^{6.633}+b \cdot e^{-6.633}
\end{aligned}
$$

Solving

```
>>s=roots([-10,0,4.4])
    0.6633
    -0.6633
>>A=[1,1 ; exp(s(1)*10), exp (s (2)*10)]
    1.0000 1.0000
    759.9477 0.0013
>> B = [6;7];
>>ab = inv(A)*B
    0.0092
    5.9908
>> t = [0:0.01:10]';
>> a = ab(1);
>> b = ab(2);
>> x = a*exp(s(1)*t) + b*exp(s(2)*t);
>> plot(t,x);
>> xlabel('Time');
```


LQG Control

6) Cart \& Pendulum (HW \#4 \& HW\#6):

$$
s\left[\begin{array}{c}
x \\
\theta \\
\dot{x} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -29.4 & 0 & 0 \\
0 & 26.133 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\theta \\
\dot{x} \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
1 \\
-0.667
\end{array}\right] F
$$

Design a full-state feedback control law of the form

$$
F=U=K_{r} R-K_{X} X
$$

for the cart and pendulum system from homework \#4 using LQG control so that

- The DC gain is 1.00
- The 2% settling time is 8 seconds, and
- There is less than 5% overshoot for a step input.

```
>> t = [0:0.01:10]';
>>Gd = tf(0.52,[1,1,0.52])
>> A = [0,0,1,0;0,0,0,1;0,-29.4,0,0;0,26.133,0,0];
>> B = [0;0;1;-0.667];
>> C = [1,0,0,0];
>> D = 0;
>> Kx = lqr(A,B,diag([1,0,0,0]),1)
Kx = -1.0000 -91.2225 -3.2623 -21.2933
>> DC = -C*inv (A-B*Kx)*B;
>> Kr = 1/DC;
>> G = Ss(A-B*Kx,B*Kr,C,D);
>> y = step(G,t);
>> plot(t,y,'b',t,yd,'r')
```


Adjust Q and R until the two are close

- Increasing $Q(1)$ speeds up the system (weighting on x)
- Increasing $\mathrm{Q}(3)$ adds more friction (weighting on dx)

```
Kx = lqr(A,B,\operatorname{diag}([10,0,2,0]),1);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
G = ss(A-B*Kx,B*Kr,C,D);
y = step (G,t);
plot(t,y)
plot(t,y,'b',t,yd,'r')
```

The final results is

```
Kx = -3.1623 -105.7740 -6.7131 -27.5987
Kr = -3.1623
```

with closed-loop poles at (about the same as pole placement)

```
>> eig(A - B*Kx)
    -5.6551
    -4.6932
    -0.6735 + 0.5689i
    -0.6735 - 0.5689i
```


7) Ball and Beam (HW \#4 \& HW\#6):

$$
s\left[\begin{array}{c}
r \\
\theta \\
\dot{r} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -7 & 0 & 0 \\
-7.84 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
r \\
\theta \\
\dot{r} \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0.4
\end{array}\right] T
$$

Design a full-state feedback control law of the form

$$
T=U=K_{r} R-K_{x} X
$$

for the ball and beam system from homework \#4 using LQG control so that

- The DC gain is 1.00
- The 2% settling time is 8 seconds, and
- There is less than 5% overshoot for a step input.

Repeating problem \#6 with a new $\{\mathrm{A}, \mathrm{B}\}$ results in

```
Kx = lqr(A,B,diag([1,0,300,20000]),1);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
G = ss(A-B*Kx,B*Kr,C,D);
y = step(G,t);
plot(t,y)
plot(t,y,'b',t,yd,'r')
```


Compare your results with homework \#6

- Where are the closed-loop poles with pole placement and with LQG control?
- Are the feedback gains larger or smaller with LQG control?
- Which one works better?

```
With LQR
Kx = - -39.2255 300.0466 -44.5247 146.6296
Kr = -19.6255
>> eig(A-B*Kx)
    -56.5688
    -0.6143 + 0.8716i
    -0.6143 - 0.8716i
    -0.8544
```

With pole placement

```
>> Kx2 = ppl(A, B, [-0.5+j*0.52,-0.5-j*0.52,-3,-4])
Kx2 = -21.8303 48.8010 -5.5867 20.0000
>> DC = -C*inv(A-B*Kx2)*B;
>> Kr2 = 1/DC
Kr2 = -2.2303
```

Pole-Placement actually gave lower gains. If you allow the system to behave the way it wants (not trying to slow it down)

```
\(K x=\operatorname{lqr}(A, B, \operatorname{diag}([1,0,100,100]), 1) ;\)
\(D C=-C * i n v(A-B * K x) * B ;\)
\(\mathrm{Kr}=1 / \mathrm{DC}\);
\(G=s s(A-B * K x, B * K r, C, D) ;\)
\(y=\operatorname{step}(G, t)\);
plot(t,y)
plot(t,y,'b',t,yd,'r')
\(\begin{array}{lllll}K x & =39.2255 & 74.5176 & -22.7561 & 21.7391\end{array}\)
\(K r=-19.6255\)
>> eig( \(A-B * K x)\)
    -4. 7164
    \(-1.1830+2.4131 i\)
    -1.1830 - \(2.4131 i\)
    \(-1.6132\)
```

I can get a faster system using similar gains using LQR

