ECE 463/663 - Homework \#10

LQG Control with Servo Compensators. Due Monday, April 17th
Please submit as a hard copy, email to jacob.glower@ndsu.edu, or submit on BlackBoard

Cart and Pendulum (HW \#4): For the cart and pendulum system of homework \#4

$$
s\left[\begin{array}{c}
x \\
\theta \\
\dot{x} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -29.4 & 0 & 0 \\
0 & 26.133 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\theta \\
\dot{x} \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
1 \\
-0.667
\end{array}\right] F
$$

Use LQG methods to design a full-state feedback control law of the form

$$
\begin{aligned}
& F=U=-K_{z} Z-K_{x} X \\
& \dot{Z}=(x-R)
\end{aligned}
$$

for the cart and pendulum system from homework \#4 using LQG control so that

- You track constant setpoints,
- You reject constant disturbances,
- The 2% settling time is 8 seconds, and
- There is less than 10% overshoot for a step input.

1) Give the control law (Kx and Kz) and explain how you chose Q and R

Adjust Q until the response matches the desired response

- Increase the weighting on Z until it's fast enough: $Q(5,5))$
- Then increase the weighting on X to reduce the overshoot: $\mathrm{Q}(1,1)$

Matlab Code

```
A = [0,0,1,0;0,0,0,1;0,-29.4,0,0;0,26.133,0,0];
B = [0;0;1;-0.667];
C = [1,0,0,0];
A5 = [A, zeros(4,1) ; C, 0];
B5 = [B;0];
C5 = [C, 0];
D5 = 0;
B5r = [0*B; -1];
Gd=tf(0.5,[1,1,0.5]);
t = [0:0.01:14]';
Yd = step(Gd,t);
K5 = lqr(A5, B5, diag([5,0,0,0,5]), 1);
G = ss(A5-B5*K5, B5r, C5, D5);
Y = step(G,t);
plot(t+0.5,Yd,'r',t,Y,'b');
```

The resulting control gains are:

```
>> Kx = K5 (1:4)
Kx = -7.0346 -118.4194 -9.9473 -32.8984
>> Kz = K5(5)
Kz = -2.2361
```

The 'optimal' closed-loop pole location is:

```
>> eig(A5 - B5*K5)
    -5.1110 + 0.1611i
    -5.1110 - 0.1611i
    -0.7156
    -0.5291 + 0.7068i
    -0.5291 - 0.7068i
```

2) Plot the step response of the linear system

Desired Resposne (red) \& Linear System's Response (blue)
3) Check your design with the nonlinear simulation of the cart and pendulum system.

Slightly more overshoot than expected (13.2\%), but looks about the same

Matlab Code:

```
% Cart and Pendulum
X = [-1; 0 ; 0 ; 0];
Ref = 1;
dt = 0.01;
t = 0;
Kx = [-7.0346 -118.4194 -9.9473 -32.8984 ];
Kz = -2.2361;
Z = 0;
y = [];
while(t < 10)
    Ref = 1;
    U = - Kx*X - Kz*Z;
    dX = CartDynamics(X, U);
    dZ = X(1) - Ref;
    X = X + dX * dt;
    Z = Z + dZ * dt;
    t = t + dt;
    CartDisplay(X, X, Ref);
    y = [y ; X(1), Ref];
end
clf
t = [1:length(y)]' * dt;
plot(t,y(:,1),'b',t,y(:,2),'r');
```

Ball and Beam (HW \#4): For the ball and beam system of homework \#4

$$
s\left[\begin{array}{c}
r \\
\theta \\
\dot{r} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -7 & 0 & 0 \\
-7.84 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
r \\
\theta \\
\dot{r} \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0.4
\end{array}\right] T
$$

Use LQG methods to design a full-state feedback control law of the form

$$
\begin{aligned}
& T=U=-K_{z} Z-K_{x} X \\
& \dot{Z}=(x-R)
\end{aligned}
$$

for the ball and beam system from homework \#6 using LQG control so that

- You track constant setpoints,
- You reject constant disturbances,
- The 2% settling time is 8 seconds, and
- There is less than 5% overshoot for a step input.

4) Give the control law (Kx and Kx) and explain how you chose Q and R

- Start with weighting Z: $\mathrm{Q}(5,5)$
- Increase the weighting until it's fast enough
- Play with the ther gains to get rid of the oscillations: weighting q' seems to help

```
A = [0,0,1,0;0,0,0,1;0,-7,0,0;-7. 84,0,0,0];
B = [0;0;0;0.4];
C = [1,0,0,0];
A5 = [A, zeros(4,1) ; C, 0];
B5 = [B;0];
C5 = [C, 0];
D5 = 0;
B5r = [0*B; -1];
Gd = tf(0.5,[1,1,0.5]);
t = [0:0.01:14]';
Yd = step(Gd,t);
K5 = lqr(A5, B5, diag([0,0,80,0,200]), 1);
G = ss(A5-B5*K5, B5r, C5, D5);
Y = step(G,t);
plot(t+0.5,Yd,'r',t,Y,'b');
```

The resulting gains and eigenvalues:

```
    Kx = K5 (1:4)
Kx = -53.1198 70.9530 -26.1422 18.8352
>> Kz = K5(5)
Kz = -14.1421
>> eig(A5 - B5*K5)
    -0.8318 + 2.8809i
    -0.8318 - 2.8809i
    -3.4527
    -1.6401
    -0.7777
>>
```

5) Plot the step response of the linear system

6) Check your design with the nonlinear simulation of the cart and pendulum system.

