ECE 463/663: Test \#1. Name

Spring 2023. Calculators allowed. Individual Effort

1) Find the transfer funciton for a system with the following step response

DC gain $=2.6$
Frequency of oscillation

$$
\omega_{d}=\left(\frac{3 \text { cycles }}{0.9 \mathrm{sec}}\right) 2 \pi=20.9
$$

2% Settling Time $=1.5 \mathrm{sec}($ approx $)$

$$
\begin{aligned}
& \sigma=\frac{4}{1.5}=2.67 \\
& G(s) \approx\left(\frac{1185}{(s+2.67+j 20.9)(s+2,67-j 20.9)}\right)=\left(\frac{1185}{s^{2}+5.34+443.9}\right)
\end{aligned}
$$

2) Determine a 2nd-order system which has approximately the same step response as the following system

$$
Y=\left(\frac{10,000}{(s+3)(s+4)(s+12)(s+15)(s+22)}\right) X
$$

Keep the two slowest poles

$$
Y=\left(\frac{k}{(s+3)(s+4)}\right) X
$$

Pick ' k ' to match the DC gain

$$
\begin{aligned}
& \left(\frac{10,000}{(s+3)(s+4)(s+12)(s+15)(s+22)}\right)_{s=0}=0.2104 \\
& \left(\frac{k}{(s+3)(s+4)}\right)_{s=0}=0.2104
\end{aligned}
$$

Solving for k

$$
\begin{aligned}
& \mathrm{k}=2.525 \\
& Y=\left(\frac{2.523}{(s+3)(s+4)}\right) X
\end{aligned}
$$

3) Give $\{A$ and $B\}$ for the the state-space model for the following system

$\left[\begin{array}{c}\mathrm{sX1} \\ \mathrm{sX2} \\ \hline \mathrm{sX3} \\ \hline \mathrm{sX4}\end{array}\right]=\left[\begin{array}{c|c|c|c}-2 & -9 & 0 & -72 \\ 7 & -3 & -5 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 8 & -4 \\ \mathrm{O} 2 \\ \mathrm{X} 3 \\ \mathrm{X} 4\end{array}\right]+\left[\begin{array}{c}\mathrm{X} 1 \\ 0 \\ 0 \\ 0\end{array}\right] \mathrm{U}$
4) Write four coupled differential equations to describe the following circuit. Assume the states are $\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{I} 3$, I4\}. Note: For capacitors: $I=C \frac{d V}{d t}$, For inductors: $V=L \frac{d I}{d t}$

$0.01 s V_{1}=I_{3}-I_{4}-\left(\frac{V_{1}}{50}\right)$
$0.02 s V_{2}=I_{4}+\left(\frac{V_{\text {in }}-V_{2}}{20}\right)-\left(\frac{V_{2}}{40}\right)$
$0.1 s I_{3}=V_{\text {in }}-2 I_{3}-V_{1}$
$0.2 s I_{4}=V_{1}-5 I_{4}-V_{2}$
5) Assume the LaGrangian is:

$$
L=3 x^{2} \dot{x}^{3} \dot{\theta}^{4}+2 x \sin (\theta)
$$

Determine

$$
\begin{aligned}
& F=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\left(\frac{\partial L}{\partial x}\right) \\
& F=\frac{d}{d t}\left(9 x^{2} \dot{x}^{2} \dot{\theta}^{4}\right)-\left(6 x \dot{x}^{3} \dot{\theta}^{4}+2 \sin (\theta)\right)
\end{aligned}
$$

Chain rule: take the derivative with respect to each term

$$
F=\left(18 x \dot{x}^{3} \dot{\theta}^{4}\right)+\left(18 x^{2} \ddot{x} \ddot{x} \dot{\theta}^{4}\right)+\left(36 x^{2} \dot{x}^{2} \dot{\theta}^{3} \ddot{\theta}\right)-\left(6 x \dot{x}^{3} \dot{\theta}^{4}+2 \sin (\theta)\right)
$$

