ECE 463/663: Test \#1. Name

Spring 2024. Calculators allowed. Individual Effort

1) Find the transfer funciton for a system with the following step response

The 2% settling time is about 250 ms

$$
\operatorname{real}(\text { pole }) \approx \frac{4}{0.25}=16
$$

The frequency of oscillation (imaginary part of pole)

$$
\operatorname{imag}(\text { pole }) \approx\left(\frac{2 \text { cycles }}{180 \mathrm{~ms}}\right) 2 \pi=69.8 \frac{\mathrm{rad}}{\mathrm{sec}}
$$

DC gain is 3.9 (ish)

$$
G(s) \approx\left(\frac{19,999}{(s+16+j 69.8)(s+16-j 69.8)}\right)
$$

(The numerator sets the DC gain to 3.9)
2) Determine a 2 nd-order system which has approximately the same step response as the following system

$$
Y=\left(\frac{50,000(s+2)(s+30)}{(s+3+j 5)(s+3-j 5)(s+22)(s+35)(s+40)}\right) X
$$

Keep

- The dominant pole $(\mathrm{s}+3+\mathrm{j} 5)$
- It's complex conjugate ($\mathrm{s}+3-\mathrm{j} 5$), and
- Zeros within similar magnitude (s+2)

$$
Y \approx\left(\frac{k(s+2)}{(s+3+j 5)(s+3-j 5)}\right) X
$$

Pick k to match the DC gain

$$
\begin{aligned}
& \left(\frac{50,000(s+2)(s+30)}{(s+3+j 5)(s+3-j 5)(s+22)(s+35)(s+40)}\right)_{s=0}=2.8648 \\
& \left(\frac{k(s+2)}{(s+3+j 5)(s+3-j 5)}\right)_{s=0}=2.8648 \\
& \mathrm{k}=48.7013
\end{aligned}
$$

so

$$
Y \approx\left(\frac{48.70(s+2)}{(s+3+j 5)(s+3-j 5)}\right) X
$$

(not asked for) In Matlab, the two systems look like...

5th-Order Sytem (blue) \& 2nd-Order Approximation (red) (not required)
3) Give $\{A$ and $B\}$ for the the state-space model for the following system

$\left[\begin{array}{c}\mathrm{sx1} \\ \hline \mathrm{sx2} \\ \mathrm{sX3} \\ \mathrm{sX4}\end{array}\right]=\left[\begin{array}{c|c|c|c}-3 & -4 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 5 & -7 & 0 \\ 0 & 0 & 1 & -8\end{array}\right]\left[\begin{array}{c}\mathrm{x} 1 \\ \mathrm{x} 2 \\ \mathrm{x} 3 \\ \mathrm{x} 4\end{array}\right]+\left[\begin{array}{c}2 \\ 0 \\ 6 \\ 0\end{array}\right]$
4) Write four coupled differential equations to describe the following circuit. Assume the states are $\{\mathrm{V} 1, \mathrm{~V} 2, \mathrm{I} 3$, I4\}. Note: For capacitors: $I=C \frac{d V}{d t}$, For inductors: $V=L \frac{d I}{d t}$

$0.03 s V_{1}=\left(\frac{V_{i n}-V_{1}}{100}\right)-I_{3}-\left(\frac{V_{1}-V_{2}}{200}\right)$
$0.04 s V_{2}=\left(\frac{V_{1}-V_{2}}{200}\right)-I_{4}-\left(\frac{V_{2}}{300}\right)$
$0.1 s I_{3}=V_{1}-3 I_{3}$
$0.2 s I_{4}=V_{2}-4 I_{4}$
5) Assume the LaGrangian is:

$$
L=2 x \cos (x) \dot{x}^{2}+3 x \dot{x} \sin (\theta)+7 \cos (2 \theta) \dot{\theta}^{2}
$$

Determine

$$
F=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)-\left(\frac{\partial L}{\partial x}\right)
$$

$$
F=\frac{d}{d t}(4 x \cos (x) \dot{x}+3 x \sin (\theta))
$$

$$
-\left(2 \cos (x) \dot{x}^{2}-2 x \sin (x) \dot{x}^{2}+3 \dot{x} \sin (\theta)\right)
$$

$$
F=4 \cos (x) \dot{x}^{2}-4 x \sin (x) \dot{x}^{2}+4 x \cos (x) \ddot{x}
$$

$$
+3 \dot{x} \sin (\theta)+3 x \cos (\theta) \dot{\theta}
$$

$$
-2 \cos (x) \dot{x}^{2}+2 x \sin (x) \dot{x}^{2}-3 \dot{x} \sin (\theta)
$$

