ECE 463/663 - Homework \#3

Canonical Forms, Similarity Transforms, LaGrangian Dynamics, Block Diagrams
Due Monday, January 29th
Please submit as a hard copy or submit on BlackBoard

Canonical Forms

Problem 1-3) For the system

$$
Y=\left(\frac{30(s+2)(s+3)}{(s+1)(s+5)(s+10)}\right) U
$$

1) Express this system in controller canonical form. (Give the A, B, C, D matrices)
2) Express this system in cascade form
3) Express this system in Jordan (diagonal) form
4) Assume a system's dynamics are

$$
\begin{aligned}
& {\left[\begin{array}{l}
s V_{1} \\
s V_{2} \\
s V_{3} \\
s V_{4}
\end{array}\right]=\left[\begin{array}{cccc}
-2 & 1 & 0 & 0 \\
1 & -3 & 1 & 0 \\
0 & 1 & -4 & 1 \\
0 & 0 & 1 & -5
\end{array}\right]\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3} \\
V_{4}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1 \\
2 \\
2
\end{array}\right] V_{0}} \\
& Y=V_{1}-V_{2}
\end{aligned}
$$

Express these dynamic with the change in variable

$$
\left[\begin{array}{l}
Z_{1} \\
Z_{2} \\
Z_{3} \\
Z_{4}
\end{array}\right]=\left[\begin{array}{c}
V_{1} \\
V_{1}+V_{2} \\
V_{1}+V_{2}+V_{3} \\
V_{1}+V_{2}+V_{3}+V_{4}
\end{array}\right]
$$

Block Diagrams

5) Determine the state-space model the following system:

6) Determine the state-space model for the following system:

LaGrangian Dynamics

A 1 kg ball is rolling on a surface defined by:

$$
y=0.5 x+\sin (2 x)
$$

7) Determine the kinetic and potential energy of this ball as a function of x : Gravity is in the $-y$ direction. Assuming a solid sphere:
8) Determine the dynamics for this ball as it rolls on this surface

