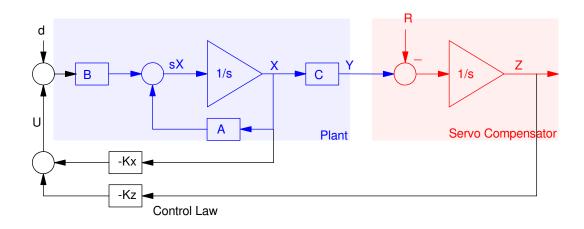

ECE 463/663 - Homework #7

Servo Compensators. Due Monday, March 11th Please submit as a hard copy, email to jacob.glower@ndsu.edu, or submit on BlackBoard

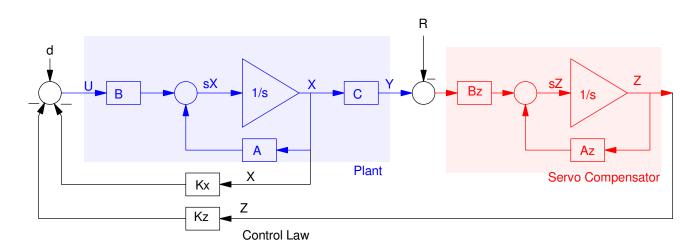
The dynamics of a Ball and Beam System (homework set #4) with a disturbance are

ſ	r		0	0	1	0	r		0		0]
S	θ		0	0	0	1	θ		0		0	d
	r		0	-7	0	0	$ \dot{r} ^{+}$	+	0 1	1 +	0	
	. .			0	0	0	θ _		0.2		0.2	


Full-State Feedback with Constant Disturbances

1) For the nonlinear simulation, use the feedback control law you computed in homework #6

- With R = 1 and the mass of the ball = 3.0kg (same result you got for homework #6), and
- With R = 1 and the mass of the ball decreased to 2.5kg


(i.e. a constant disturbance on the system due to a different mass of the ball)

Servo Compensators with Constant Set-Points

- 2) Assume a constant disturbance and/or a constant set point. Design a feedback control law that results in
 - The ability to track a constant set point (R = constant)
 - The ability to reject a constant disturbance (d = constant),
 - A 2% settling time of 8 seconds, and
 - No overshoot for a step input.
- 3) For the linear system, plot the step response
 - With respect to a step change in R, and
 - With respect to a step change in d
- 4) Implement your control law on the nonlinear ball and beam system
 - With R = 1 and the mass of the ball being 3.0kg, and
 - With R = 1 and the mass of the ball being 2.5kg

Servo Compensators with Sinulsoidal Set-Points

- 5) Assume a 0.7 rad/sec disturbance and/or set point (R). Design a feedback control law that results in
 - The ability to track a constant set point (R = sin(0.7t))
 - The ability to reject a constant disturbance (d = sin(0.7t)),
 - A 2% settling time of 12 seconds, and
- 6) For the linear system, plot the response
 - With R(t) = sin(0.7t), and
 - With $d(t) = \sin(0.7t)$
- 7) Implement your control law on the nonlinear ball and beam system
 - With R = sin(0.7t) and the mass of the ball being 3.0kg, and
 - With R = sin(0.7t) and the mass of the ball being 2.5kg