ECE 463/663 - Homework #13

LQG/LTR. Due Monday, April 29th Please submit as a hard copy, email to jacob.glower@ndsu.edu, or submit on BlackBoard

LQG / LTR

For the cart and pendulum system of homework set #4:

	x		0	0	1	0	x		0	
s	θ	=	0	0	0	1	θ	+	0	F
	ż		0	-2.45	0	0	ż		0.25	
	θ		0	9.42	0	0	θ		-0.1923	

Design a control law so that the cart and pendulum system behaves like the following reference model:

$$\boldsymbol{y}_m = \left(\frac{1}{s^2 + s + 1}\right) \boldsymbol{R}$$

LQG/LTR without a Servo Compensator:

- 1) Give a block diagram for your controller
- 2) (20pt) Plot the step response of the model and the linearlized plant for yor control law for
 - $Q = 100 e^2$
 - $Q = 1,000 e^2$
 - $Q = 10,000 e^2$

LQG/LTR with a Servo Compensator:

- 3) Give a block diagram for your controller plus servo compensator
- 4) (20pt) Plot the step response of the model and the linearlized plant for yor control law for
 - $Q = 100 z^2$
 - $Q = 1,000 z^2$
 - $Q = 10,000 z^2$