ECE 463/663 - Homework \#1

LaPlace Transforms and Dominant Poles. Due Wednesday, Jan 17th Please submit as a hard copy or submit on BlackBoard

1) Name That System! Give the transfer function for a system with the following step response.

This looks like a 1st-order system (no oscillations)

$$
G(s) \approx\left(\frac{a}{s+b}\right)
$$

Ts $=1.5$ seconds (approx)

$$
b \approx \frac{4}{1.5 s}=2.667
$$

DC gain $=1.65$ (approx)

$$
\begin{aligned}
& \left(\frac{a}{s+b}\right)_{s=0}=1.65 \\
& a=4.40
\end{aligned}
$$

so

$$
G(s) \approx\left(\frac{4.400}{s+2.667}\right)
$$

2) Name That System! Give the transfer function for a system with the following step response.

This is a second-order system (oscillations)

$$
G(s) \approx\left(\frac{a}{(s+b+j c)(s+b-j c)}\right)
$$

Ts $=2.5$ seconds (approx)

$$
b \approx \frac{4}{2.4}=1.60
$$

The frequency of oscillations (in $\mathrm{rad} / \mathrm{sec}$) is

$$
c=\left(\frac{2 \text { cycles }}{2.5 \mathrm{~s}}\right) 2 \pi=5.02
$$

DC gain is 1.8 (approx)

$$
\begin{aligned}
& \left(\frac{a}{(s+1.6+j 5.02)(s+1.6-j 5.02)}\right)_{s=0}=1.8 \\
& a=50.08
\end{aligned}
$$

and

$$
G(s) \approx\left(\frac{50.08}{(s+1.6+j 5.02)(s+1.6-j 5.02)}\right)
$$

Problem 3-6) Assume

$$
Y=\left(\frac{40(s+6)}{(s+2)(s+8)(s+9)}\right) X
$$

3) What is the differential equation relating X and Y ?

Cross multiply and multiply out the polynomials

$$
\begin{aligned}
& ((s+2)(s+8)(s+9)) Y=40(s+6) X \\
& \left(s^{3}+19 s^{2}+106 s+144\right) Y=(40 s+240) X
\end{aligned}
$$

Note that sY means 'the derivative of $\mathrm{y}(\mathrm{t})^{\prime}$

$$
y^{\prime \prime \prime}+19 y^{\prime \prime}+106 y^{\prime}+144 y=40 x^{\prime}+240 x
$$

4) Determine $y(t)$ assuming $x(t)$ is a sinusoidal input:

$$
x(t)=4 \cos (6 t)+2 \sin (6 t)
$$

Use phasors

$$
\begin{aligned}
& s=j 6 \\
& X=4-j 2 \\
& Y=\left(\frac{40(s+6)}{(s+2)(s+8)(s+9)}\right)_{s=j 6} \cdot(4-j 2) \\
& Y=-1.2308-1.8462 i
\end{aligned}
$$

meaning

$$
y(t)=-1.2308 \cos (6 t)+1.8462 \sin (6 t)
$$

5) Determine $y(t)$ assuming $x(t)$ is a step input:

$$
\begin{aligned}
& x(t)=u(t) \\
& Y=\left(\frac{40(s+6)}{(s+2)(s+8)(s+9)}\right) X \\
& Y=\left(\frac{40(s+6)}{(s+2)(s+8)(s+9)}\right)\left(\frac{1}{s}\right)
\end{aligned}
$$

Use partial fractions

$$
Y=\left(\frac{1.667}{s}\right)+\left(\frac{3.8095}{s+2}\right)+\left(\frac{13.333}{s+8}\right)+\left(\frac{-17.1429}{s+9}\right)
$$

Take the inverse LaPlace transform

$$
y(t)=\left(1.667+3.8095 e^{-2 t}+13.333 e^{-8 t}-17.1429 e^{-9 t}\right) u(t)
$$

6a) Determine a 1st-order approximation for this system

$$
Y=\left(\frac{40(s+6)}{(s+2)(s+8)(s+9)}\right) X \approx\left(\frac{a}{s+b}\right) X
$$

Keep the dominant pole ($\mathrm{s}+2$)
Match the DC gain

$$
\begin{aligned}
& \left(\frac{40(s+6)}{(s+2)(s+8)(s+9)}\right)_{s=0}=1.6667 \\
& \left(\frac{a}{s+2}\right)_{s=0}=1.6667 \\
& a=3.33333
\end{aligned}
$$

so

$$
\left(\frac{40(s+6)}{(s+2)(s+8)(s+9)}\right) X \approx\left(\frac{3.333}{s+2}\right)
$$

6b) Compare the step response of your 1st-order model to the actual 3rd-order system
$\gg G 3=\operatorname{zpk}(-6,[-2,-8,-9], 40)$;
>> G1 $=\operatorname{zpk}([],-2,3.3333)$;
$\gg t=[0: 0.01: 4]$ ';
>> $y^{3}=\operatorname{step}(G 3, t) ;$
>> yl = step (G1,t);
>> plot (t,y3,'b',t,y1,'r')
>> xlabel('Time (seconds)')
>>

3rd-Order Model (blue) \& 1st-Order Approximation (red)

Sidelight: Adding a delay makes for a better model. Adding an 80 ms delay to the 1 st-order model gives
>> plot (t,y3,'b', t+0.08, y1, 'r')
>> xlabel('Time (seconds)')

3rd-Order Model (blue) \& 1st-Order Approximation with an 80ms Delay (red)
so a better model would be

$$
\left(\frac{40(s+6)}{(s+2)(s+8)(s+9)}\right) X \approx\left(\frac{3.333}{s+2}\right) \cdot e^{-0.08 s}
$$

