ECE 463/663 - Homework \#6

Pole Placement. Due Monday, February 26th
Please submit as a hard copy, email to jacob.glower@ndsu.edu, or submit on BlackBoard

Problem 1) (30pt) Use the dynamics of a Cart and Pendulum System from homework set \#4:

$$
s\left[\begin{array}{c}
x \\
\theta \\
\dot{x} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -2.45 & 0 & 0 \\
0 & 9.42 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
\theta \\
\dot{x} \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0.25 \\
-0.1923
\end{array}\right] F
$$

(10pt) Design a feedback control law of the form

$$
\mathrm{U}=\mathrm{Kr} * \mathrm{R}-\mathrm{Kx} * \mathrm{X}
$$

so that the closed-loop system has

- A 2% settling time of 5 seconds, and
- 5\% overshoot for a step input

Start with translating the requirements to pole location:
2% settling time of 5 seconds
The real part of the dominant pole should be at -0.8

5\% overshoot for a step input
The damping ratio should be 0.6901 (2nd-order approximations)
The angle of the dominant pole should be 46.36 degrees $(\zeta=\cos \theta)$
The dominant pole should be at $\mathrm{s}=-0.8+\mathrm{j} 0.8390$

Place the poles of the closed-loop system at $\mathrm{s}=\{-0.8+\mathrm{j} 0.8390,-0.8-\mathrm{j} 0.8390,-5,-6\}$
The last two poles are arbitrary - they don't affect the step response

In Matlab: Input the system dynamics:

```
>> A = [0,0,1,0;0,0,0,1;0,-2.45,0,0;0,9.42,0,0]
\begin{tabular}{rrrr}
0 & 0 & 1.0000 & 0 \\
0 & 0 & 0 & 1.0000 \\
0 & -2.4500 & 0 & 0 \\
0 & 9.4200 & 0 & 0
\end{tabular}
>> B = [0;0;0.25;-0.1923]
    0
    0.2500
    -0.1923
```

```
>> C = [1,0,0,0];
>> D = 0;
```

Find Kx to place the closed-loop poles

```
>> P = [-0.8 + j*0.8390, -0.8 - j*0.8390, -5, -6];
>> Kx = ppl(A, B, P)
Kx = -21.4015 -331.3277 -33.3268 -108.8492
>> eig(A - B*Kx)
    -6.0000
    -5.0000
    -0.8000 + 0.8390i
    -0.8000 - 0.8390i
```

Find Kr to set the DC gain to 1.000

```
>> DC = -C*inv(A-B*Kx)*B
DC = -0.0467
>> Kr = 1/DC
Kr = -21.4015
```

(10pt) Check the step response of the linear system in Matlab

```
>> Gcl = SS(A-B*Kx, B*Kr, C, D);
>> t = [0:0.01:8]';
>> y = step(Gcl, t);
>> max(y)
ans = 1.0572
>> plot(t,y,t,0*y+1,'m--',t,0*y+1.05,'m--')
```

$\mathrm{y}(\mathrm{t})$ has 5.72% overshoot (should be 5.00%)

(10pt) Check the step response of the nonlinear system

- The results are almost identical to the linear system's response

Matlab Code:

```
% Cart and Pendulum
% Homework #6: Pole Placememt
X = [0,0,0,0]';
Ref = 1;
dt = 0.01;
t = 0;
n = 0;
y = [];
Kx = [-21.4015 -331.3277 -33.3268 -108.8492];
Kr = -21.4015;
```

while(t < 15)
Ref = 1;
$\mathrm{U}=\mathrm{Kr}$ 胃ef $-\mathrm{Kx} \mathrm{X}_{\mathrm{X}}$;
$d X=\operatorname{CartDynamics(X,U);~}$
$X=X+d X * d t$;
$t=t+d t ;$
$\mathrm{n}=\bmod (\mathrm{n}+1,5)$;
if ($\mathrm{n}==0$)
CartDisplay(X, Ref);
end
$y=[y ; X(1), X(2), R e f] ;$
end
$t=[1: l e n g t h(y)] ' * d t ;$
plot(t,y);

Problem 2) (30pt) Use the dynamics for the Ball and Beam system from homework set \#4.

$$
s\left[\begin{array}{c}
r \\
\theta \\
\dot{r} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -7 & 0 & 0 \\
-5.88 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
r \\
\theta \\
\dot{r} \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0.2
\end{array}\right] T
$$

(10pt) Design a feedback control law so that the closed-loop system has

- A 2% settling time of 5 seconds, and
- 5% overshoot for a step input

Similar to problem \#1, input the dynamics:

```
>> A = [0,0,1,0;0,0,0,1;0,-7,0,0;-5.88,0,0,0]
\begin{tabular}{rrrr}
0 & 0 & 1.0000 & 0 \\
0 & 0 & 0 & 1.0000 \\
0 & -7.0000 & 0 & 0 \\
-5.8800 & 0 & 0 & 0
\end{tabular}
>> B = [0;0;0;0.2]
    0
    0
    0.2000
>> C = [1,0,0,0];
>> D = 0;
```

Find Kx to place the closed-loop poles

```
>> P = [-0.8 + j*0.8390, -0.8 - j*0.8390, -5, -6];
>> Kx = ppl(A, B, P)
Kx = - -58.1983 244.7196 -44.8451 63.0000
```

```
>> eig(A - B*Kx)
    -6.0000
    -5.0000
    -0.8000 + 0.8390i
    -0.8000 - 0.8390i
```

Find Kr to set the DC gain to 1.000

```
>> DC = -C*inv(A-B*Kx)*B
DC = -0.0347
>> Kr = 1/DC
Kr = -28.7983
```

$\gg(10 \mathrm{pt})$ Check the step response of the linear system in Matlab

```
>> Gcl = ss(A-B*Kx, B*Kr, C, D);
>> t = [0:0.01:8]';
>> y = step (Gcl, t);
>> plot(t,y,t,0*y+1,'m--',t,0*y+1.05,'m--')
>> max(y)
ans = 1.0473
```

$\mathrm{y}(\mathrm{t})$ has 4.73% overshoot (should be 5.00%)

(10pt) Check the step response of the nonlinear system

- The step response is almost identical to the linear system
- It's pretty slow - the nonlinearities have little impact at this speed

Matlab Code

```
% Ball & Beam System
% Spring 2024
% Homework #6
X = [0, 0, 0, 0]';
dt = 0.002;
t = 0;
n = 0;
y = [];
Kx = [\begin{array}{lllll}{-58.1983 244.7196 -44.8451 63.0000];}\end{array}]
Kr = [-28.7983];
while(t < 15)
    Ref = 1;
    U = Kr*Ref - Kx*X;
    dX = BeamDynamics(X, U);
    X = X + dX * dt;
    t = t + dt;
    y = [y ; Ref, X(1)];
    n = mod}(n+1,5)
    if(n == 0)
        BeamDisplay(X, Ref);
        end
    end
t = [1:length(y)]' * dt;
plot(t,y(:, 1),'r',t,y(:, 2),'b');
xlabel('Time (seconds)');
ylabel('Ball Position');
```

Problem \#3 (30pt): The dynamics of a double gantry (Gantry2) are

$$
s\left[\begin{array}{c}
x \\
\theta_{1} \\
\theta_{2} \\
\dot{x} \\
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 2 g & 0 & 0 & 0 & 0 \\
0 & -3 g & g & 0 & 0 & 0 \\
0 & 3 g & -3 g & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\theta_{1} \\
\theta_{2} \\
\dot{x} \\
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
-1 \\
1
\end{array}\right] F
$$

(10pt) Design a feedback control law of the form

$$
\mathrm{U}=\mathrm{Kr} * \mathrm{R}-\mathrm{Kx} * \mathrm{X}
$$

so that the closed-loop system has

- A 2% settling time of 10 seconds, and
- 5\% overshoot for a step input

```
>> Z = zeros(3,3);
>> I = eye (3,3);
>> g = 9.8;
>> K = [0,2,0;0,-3,1;0,3,-3]*g;
>> A = [Z,I ; K,Z]
```

0	0	0	1.0000	0	0
0	0	0	0	1.0000	0
0	0	0	0	0	1.0000
0	19.6000	0	0	0	0
0	-29.4000	9.8000	0	0	0
0	29.4000	-29.4000	0	0	0

```
>> eig(A)
            0
    0.0000 + 6.8099i
    0.0000 - 6.8099i
    0.0000 + 3.5250i
    0.0000 - 3.5250i
>> B = [0;0;0;1;-1;1]
    0
    0
    0
    1
    -1
    1
>> rank([B,A*B,A^2*B,A^3*B,A^4*B,A^5*B])
ans =
                    6
>> P = [-0.4+j*0.42,-0.4-j*0.42,-2,-3,-4,-5];
>> Kx = ppl(A, B, P)
Kx = 0.2102 16.1936 39.7198 0.7695 0.9.4564 4.5741
>> eig(A - B*Kx)
    -5.0000
    -4.0000
    -3.0000
    -2.0000
    -0.4000 + 0.4200i
    -0.4000 - 0.4200i
>> C = [1,0,0,0,0,0];
>> D = 0;
>> DC = -C*inv(A - B*Kx)*B;
>> Kr = 1/DC
Kr = 0.2102
```

(10pt) Determine the step response of the linear system in Matlab
$\gg G c l=\operatorname{SS}(A-B * K x, B * K r, C, D) ;$
$\gg t=[0: 0.01: 15]^{\prime} ;$
$\gg y=\operatorname{step}(G c l, t) ;$
$\gg \mathrm{plot}\left(t, y, t, 0 * t+1,^{\prime} \mathrm{m}-\mathrm{-}^{\prime}, \mathrm{t}, 0 * \mathrm{t}+1.05 \mathrm{r}^{\prime} \mathrm{m}-\mathrm{-}^{\prime}\right)$
>> xlabel('Time (seconds)');

>>
(10pt) Determine the step response of the nonlinear system

```
X = [0, 0, 0, 0, 0, 0]';
Ref = 1;
dt = 0.01;
U = 0;
t = 0;
Kx = [lllllllllll}0.2102 16.1936 39.7198 0.7695 -9.4564 4.5741];
Kr = 0.2102;
y = [];
n = 0;
while(t < 15)
    Ref = 1;
    U = Kr*Ref - Kx*X;
    dX = Gantry2Dynamics(X, U);
    X = X + dX * dt;
    t = t + dt;
    n = mod(n+1,5);
    if(n == 0)
        Gantry2Display(X, Ref);
        plot([Ref, Ref],[-0.1,0.1],'b');
        end
    y = [y ; Ref, X(1), X(2), X(3)];
end
pause(2);
t = [1:length(y)]' * dt;
plot(t,y);
xlabel('Time (seconds)');
```


