ECE 463/663 - Homework \#11

LQG Control with Servo Compensators. Due Monday, April 15th

Cart and Pendulum (HW \#4): For the cart and pendulum system of homework \#4

$$
s\left[\begin{array}{c}
x \\
\theta \\
\dot{x} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -2.45 & 0 & 0 \\
0 & 9.42 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\theta \\
\dot{x} \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0.25 \\
-0.1923
\end{array}\right] F
$$

Use LQG methods to design a full-state feedback control law of the form

$$
\begin{aligned}
& F=U=-K_{z} Z-K_{x} X \\
& \dot{Z}=(x-R)
\end{aligned}
$$

for the cart and pendulum system from homework \#4 using LQG control so that

- You track constant setpoints,
- You reject constant disturbances,
- The 2% settling time is 8 seconds, and
- There is less than 10% overshoot for a step input.

1) Give the control law (Kx and Kz) and explain how you chose Q and R
```
>> Kx = K5(1:4)
Kx = -15.9909 -203.1194 -20.6044 -70.3334
>> Kz = K5(5)
Kz = -5.4772
```

Q and R fround by trial and error

- Start with Q weighting $\mathrm{Z}: \mathrm{Q}=\operatorname{diag}([0,0,0,0,1]), \mathrm{R}=1$
- Increase Q until it's a little fast
- Increase the weighting on $\mathrm{X}: \mathrm{Q}=\operatorname{diag}([30,0,0,0,30]), \mathrm{R}=1$

2) Plot the step response of the linear system
```
A = [0,0,1,0;0,0,0,1;0,-2.45,0,0;0,9.42,0,0];
B = [0;0;0.25;-0.1923];
C = [1,0,0,0];
A5 = [A, zeros(4,1) ; C, 0];
B5 = [B; 0];
C5 = [C, 0];
B5r = [zeros(4,1); -1];
Gd = tf(0.5249, [1,1,0.5249]);
t = [0:0.01:12]';
Yd = step(Gd, t);
Q = diag([30,0,0,0,30]);
R = 1;
K5 = lqr(A5, B5, Q, R);
Gcl = ss(A5-B5*K5, B5r, C5, 0);
Y = step(Gcl, t);
plot(t,Y,'b',t,Yd,'r');
eig(A5 - B5*K5)
```


3) Check your design with the nonlinear simulation of the cart and pendulum system.

Code:

```
% Cart and Pendulum ( Sp21 version)
% m1 = 1.0kg
% m2 = 4.0kg
% L = 1.0m
X = [0; 0 ; 0 ; 0];
Ref = 1;
dt = 0.01;
t = 0;
Kx = [l-15.9909 -203.1194 -20.6044 -70.3334];
Kz = -5.4772;
Z = 0;
y = [];
while(t < 10)
    Ref = 1;
    U = - Kx*X - Kz*Z;
    dX = CartDynamics(X, U);
    dZ = X(1) - Ref;
    X = X + dX * dt;
    Z = Z + dZ * dt;
    t = t + dt;
    CartDisplay(X, X, Ref);
    y = [y ; X(1), Ref];
end
clf
t = [1:length(y)]' * dt;
plot(t,y(:,1),'b',t,y(:,2),'r');
```

Ball and Beam (HW \#4): For the ball and beam system of homework \#4

$$
s\left[\begin{array}{c}
r \\
\theta \\
\dot{r} \\
\dot{\theta}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -7 & 0 & 0 \\
-5.88 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
r \\
\theta \\
\dot{r} \\
\dot{\theta}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0.2
\end{array}\right] T
$$

Use LQG methods to design a full-state feedback control law of the form

$$
\begin{aligned}
& T=U=-K_{z} Z-K_{x} X \\
& \dot{Z}=(x-R)
\end{aligned}
$$

for the ball and beam system from homework \#6 using LQG control so that

- You track constant setpoints,
- You reject constant disturbances,
- The 2% settling time is 8 seconds, and
- There is less than 5% overshoot for a step input.

4) Give the control law (Kx and Kx) and explain how you chose Q and R
```
Kx = - -87.7063 136.5570 -47.9119 36.9536
>> Kz = K5(5)
Kz = -26.4575
```

Procedure:

- Increase the weitghting on Z until the speed is about right
- Then see what happens if you increase the weighting on $x, q, x^{\prime}, q^{\prime}$
- Turns out weighting x^{\prime} works best for decreasing the oscillations
- Adding in some weight on x smooths out the response.

Final Q \& R:

```
Q = diag([400,0,300,0,700]);
R = 1;
```

5) Plot the step response of the linear system

```
% Ball and Beam System
% Spring 2024
A = [0,0,1,0;0,0,0,1;0,-7,0,0;-5.88,0,0,0];
B = [0;0;0;0.2];
C = [1,0,0,0];
A5 = [A, zeros (4,1) ; C, 0];
B5 = [B; 0];
C5 = [C, 0];
B5r = [zeros (4,1); -1];
Gd= tf(0.5249, [1,1,0.5249]);
t = [0:0.01:12]';
Yd = step(Gd, t);
Q = diag([400,0,300,0,700]);
R = 1;
K5 = lqr(A5, B5, Q, R);
Gcl = SS(A5-B5*K5, B5r, C5, 0);
Y = step(Gcl, t);
plot(t,Y,'b',t,Yd,'r');
eig(A5 - B5*K5)
```

6) Check your design with the nonlinear simulation of the cart and pendulum system.

Code:

```
% Ball & Beam System
% m = 1kg
% J = 0.2 kg m^2
X = [0, 0, 0, 0]';
dt = 0.01;
t = 0;
Kx = [l-92.2782 142.9900 -50.8232 37.8140];
Kz = [-26.4575];
Z = 0;
n = 0;
y = [];
while(t < 7.9)
    Ref = 1;
    U = -Kz*Z - Kx*X;
    dX = BeamDynamics(X, U);
    dZ = X(1) - Ref;
    X = X + dX * dt;
    Z = Z + dZ * dt;
    t = t + dt;
    Y = [y ; Ref, X(1)];
    n = mod(n+1,2);
    if(n == 0)
        BeamDisplay(X, Ref);
    end
    end
t = [1:length(y)]' * dt;
plot(t,y(:,1),'r',t,y(:, 2),'b');
xlabel('Time (seconds)');
ylabel('Ball Position');
```

