
System Modeling and State-Space

There are several ways to express a dynamic system. In ECE 343, you used transfer functions, such as

Y  


10

s22s10

X

In this class, we'll be using a formulation called State Space. State-space is an energy-based system to describe
the dynamics of a system. In essence, the states, X, define the energy in the system. The change in the energy
describes how the system behaves as

sX  AX  BU

What you measure is also a funciton of the energy in the system.

Y  CX DU

Together, this gives you a state-space representation for a system:

Example 1: RLC Circuit

For the following RLC circuit,

Find the transfer function for the following circuit from Vin to Vout
Find the dominant pole of this system
Determine a 1st or 2nd-order approximation for this system:

+

-

Vout

Vin

0.1H 0.2H

0.1F 0.2F

10

20

I1 I3

V2 V4
+

-

+

-

Example 1: RLC Circuit

Let the states, X, define the energy in the system (the current through the inductors and the voltage across the
capacitors):

X 













I1

V2

I3

V4













NDSU System Modeling ECE 463

JSG 5 rev 01/04/16

The change in the states can then be found using the basic equations for an inductor and capacitor:

V  LdI
dt

I  CdV
dt

The voltage across the first inductor is then

VL1  0.1sI1  Vin  V2  10I1
The current to capacitor 2 is

IC2  0.1sV2  I1  I3

The voltage across inductor 3 is

VL3  0.2sI3  V2  V4

The current to capacitor 4 is

IC4  0.2sV4  I3 
V4

20

Put these together and you get

sI1  10Vin  10V2  100I1

sV2  10I1  10I3

sI3  5V2  5V4

sV4  5I3  0.25V4

In matrix form (a.k.a. state-space form):













sI1

sV2

sI3

sV4


























100 10 0 0
10 0 10 0
0 5 0 5
0 0 5 0.25

























I1

V2

I3

V4


























10
0
0
0












Vin

The output is equal to V4, so

Vout   0 0 0 1 













I1

V2

I3

V4












 0Vin

In Matlab, you can find the transfer function:

NDSU System Modeling ECE 463

JSG 6 rev 01/04/16

>> A = [-100,-10,0,0;10,0,-10,0;0,5,0,-5;0,0,5,-0.25]

 -100.0000 -10.0000 0 0
 10.0000 0 -10.0000 0
 0 5.0000 0 -5.0000
 0 0 5.0000 -0.2500

>> B = [10;0;0;0]

 10
 0
 0
 0

>> C = [0,0,0,1]

 0 0 0 1

>> D = 0

 0

>> G4 = ss(A,B,C,D);

The transfer function from Vin to Vout is:
>> zpk(G4)

 2500
--
(s+98.99) (s+0.5025) (s^2 + 0.7525s + 75.38)

Its first-order approximation is:

A 1st-order system
With a DC gain of 0.6667, and
A 2% settling time of 8 seconds (4 / 0.5025).

>> DC = evalfr(G4,0)

 0.6667

>> G1 = tf(0.6667*0.5025,[1,0.5025])

 0.335

s + 0.5025

>> y4 = step(G4,t);
>> y1 = step(G1,t);
>> plot(t,y4,'b',t,y1,'r');

The actual step response from Matlab is as follows:

NDSU System Modeling ECE 463

JSG 7 rev 01/04/16

Step Response of the 4th-order RLC circuit (blue) and its 1st-order approximation (red)

Example 2: RC Filter (Heat Equation)

Consider next the following 10-stage RC filter

+
-

Vin

1

0.150

1

0.150

1

0.150

V0 V1 V2 V3

1

0.150

1

0.150

1

0.150

V7 V8 V9 V10

V4

Y

+

-

Ia

Ib

Ic
Ic2

Example 2: 10-stage RC filter

While this looks daunting, in state-space it isn't that bad. Since each stage is identical, the equations will be the
same. Take node 2 for example. The current to the capacitor (IC2) is the sum of the currents coming in:

Ic2 = Ia + Ib + Ic

NDSU System Modeling ECE 463

JSG 8 rev 01/04/16

Ic2  CsV2  


V1V2

1

 




0V2

50

 




V3V2

1



or

sV2  10V1  20.2V2  10V3

This repeats for nodes 1..9. Node #10 is slightly different since it only connects to one other node::

Ic10  CsV10  


V9V10

1

 




0V20

50



sV10  10V9  10.2V10

In Matlab:
>> A = zeros(10,10);
>> for i=1:9
 A(i,i) = -20.2;
 A(i,i+1) = 10;
 A(i+1,i) = 10;
 end
>> A(10,10) = -10.2;

 -20.2000 10.0000 0 0 0 0 0 0 0 0
 10.0000 -20.2000 10.0000 0 0 0 0 0 0 0
 0 10.0000 -20.2000 10.0000 0 0 0 0 0 0
 0 0 10.0000 -20.2000 10.0000 0 0 0 0 0
 0 0 0 10.0000 -20.2000 10.0000 0 0 0 0
 0 0 0 0 10.0000 -20.2000 10.0000 0 0 0
 0 0 0 0 0 10.0000 -20.2000 10.0000 0 0
 0 0 0 0 0 0 10.0000 -20.2000 10.0000 0
 0 0 0 0 0 0 0 10.0000 -20.2000 10.0000
 0 0 0 0 0 0 0 0 10.0000 -10.2000

>> B = [10;0;0;0;0;0;0;0;0;0]

 10
 0
 0
 0
 0
 0
 0
 0
 0
 0

>> C = [0,0,0,0,0,0,0,0,0,1];
>> D = [0];
>> G = ss(A,B,C,D);
>> evalfr(G,0)

 0.4325

>> zpk(G)

 10000000000

(s+39.31) (s+36.72) (s+32.67) (s+27.51) (s+21.69) (s+15.75) (s+10.2) (s+5.539) (s+2.181) (s+0.4234)

This is the transfer function for this RC filter. Its response should

Have a DC gain of 0.4325, and
A 2% settling time of 9.44 seconds (4 / 0.4234)

Gs  


0.1793
s0.4234




NDSU System Modeling ECE 463

JSG 9 rev 01/04/16

The actual step-response from Matlab is

>> G1 = zpk([],[-0.4234],0.1793)

Zero/pole/gain:
 0.1793

(s+0.4234)

>> t = [0:0.001:10]';
>> y1 = step(G1,t);
>> y10 = step(G10,t);
??? Undefined function or variable 'G10'.

>>
>> y10 = step(G,t);
>> plot(t,y10,'b',t,y1,'r');

Step Response of the 10th Order RC Filter (blue) and its 1st-Order Approximation (red)

Example 3: Mass-Spring System

Finally, consider a mass-spring system:

K1

f

m1

B3

K2

K3

m2

B1 B2x1 x2

Example 3: Mass Spring System

NDSU System Modeling ECE 463

JSG 10 rev 01/04/16

To put this in state-space form, redraw this as a circuit equivalent using the following dual:

I  1
R  V

F  Ms2  X
If

Current is the analog of force, and
Voltage is the analog of position, then
The admittance is the analog of

Ms2 (for a mass)
Bs (for friction)
K (for a spring)

This mass-spring system has three displacements. The circuit equivalent has three node voltages (X1, X2, X3).

Each node has mass relative to ground (i.e. Einstein's theory of relativity)

The other nodes are the springs and friction

Redrawing this mass-spring circuit:

X1 X2

F K1

s B1

M1 s²
B3 s

K2

M2 s²

B2 s

K3

gnd

Writing the node equations then results in

K1  B1s M1s2  K2  B3sX1  K2  B3sX2  F

M2s2  B2s K3  K2  B3sX2  K2  B3sX1  0

Solving for the highest derivative:

M1s2X1  K1 K2  B1s  B3sX1  K2  B3sX2  F

M2s2X2  B2s K3 K2  B3sX2  K2  B3sX1

The states (that which determines the energy in the system) are

position, and
velocity.

Defining the states this way results in the matrix formulation of dynamics (i.e. the state-space model) being:

NDSU System Modeling ECE 463

JSG 11 rev 01/04/16

s















X1

X2

. ..

sX1

sX2


































0 0
.
.. 1 0

0 0
.
.. 0 1

.



K1K2

M1







K2

M1




.

..


B1B3

M1







B3

M1







K2

M2






K2K3

M2




.

..



B3

M2






B2B3

M2




































X1

X2

. ..

sX1

sX2

































0
0
. ..




1
M1




0

















F

Y  X2   0 1 0 0 













X1

X2

sX1

sX2












 0F

Note that

You have 2N states, where N is the number of masses. Each mass has two energy states (kinetic and
potential energy) giving your 2N state variables.
The first N rows are [0 : I] where I is the identity matrix. This tells MATLAB that the states are position
and velocity.
The last N rows are where the dynamics come into play.

Also also, you can have real or complex poles for mass-spring systems - unlike the heat equation which always
has real poles.

Finding the Transfer Function:

To find the transfer function, use MATLAB or SciLab. Assume for example that

M = 1kg
B = 2 Ns/m
K =10 N/m

Then the state-space model is:

s













X1

X2

sX1

sX2


























0 0 1 0
0 0 0 1
20 10 4 2
10 20 2 4

























X1

X2

sX1

sX2


























0
0
1
0












F

MATLAB Code: Input the A B C D matrices:

-->a11 = zeros(2,2);
-->a12 = eye(2,2);
-->a21 = [-20,10;10,-20];
-->a22 = [-4,2;2,-4];
-->A = [a11,a12;a21,a22]

NDSU System Modeling ECE 463

JSG 12 rev 01/04/16

 0. 0. 1. 0.
 0. 0. 0. 1.
 - 20. 10. - 4. 2.
 10. - 20. 2. - 4.

-->B = [0;0;1;0];
-->C = [0,1,0,0];
-->D = 0;

Use these to define G(s):

-->G = ss(A,B,C,D)

Once G(s) is in MATLAB, find the transfer function

-->[z,p,k] = zpk(G)
 k =
 2.

 p =
 - 3. + 4.5825757i
 - 3. - 4.5825757i
 - 1. + 3.i
 - 1. - 3.i

 z =
 - 5.

meaning:

 X2  


2s5
s3j4.58s1j3


F

If you want to approximate this with a 2nd-order model, keep the slowest pole and match the DC gain
-->DC = evalfr(G,0)
 0.0333333

So

X2  


0.3333
s1j3


F

To check the response in MATLAB, take the two step responses.

Input the 2nd-order approximation:

-->G2 = zpk([],[-1+j*3,-1-j*3],0.3333)

Take the step response of the two systems:
-->t = [0:0.1:100]';
-->x2 = step(G,t);
-->x2a = step(G2,t);

and plot
-->plot(t,x2,t,x2a)

NDSU System Modeling ECE 463

JSG 13 rev 01/04/16

-->xlabel('Time (seconds)');
-->ylabel('X2 (meters)');

Note that the 2nd-order model isn't that good of an approximation: the 'fast' pole is only 3x faster.

Step Response of the 4th-Order Mass-Spring System (blue) and its 2nd-Order Approximation (red)

NDSU System Modeling ECE 463

JSG 14 rev 01/04/16

Matlab Code:
 a11 = zeros(2,2);
 a12 = eye(2,2);
 a21 = [-20,10;10,-20];
 a22 = [-4,2;2,-4];
 A = [a11,a12;a21,a22]

 0 0 1 0
 0 0 0 1
 -20 10 -4 2
 10 -20 2 -4

 B = [0;0;1;0];
 C = [0,1,0,0];
 D = 0;
 G = ss(A,B,C,D);

 zpk(G)

 2 (s+5)

(s^2 + 2s + 10) (s^2 + 6s + 30)

 tf(G)

 2 s + 10

s^4 + 8 s^3 + 52 s^2 + 120 s + 300

X2  


2s5
s3j4.58s1j3


F

NDSU System Modeling ECE 463

JSG 15 rev 01/04/16

