
Canonical Forms and Similarity Transforms

Canonical Forms
Suppose you want to represent the transfer function

Y = ⎛
⎝

a3s3+a2s2+a1s+a0

s4+b3s3+b2s2+b1s+b0

⎞
⎠U

in state-space form

sX = AX + BU

Y = CX +DU
In the transfer function, there are six constraints. In state-space, there are 16 degrees of freedom. What this
means is there are in infinite number of ways to represent the same system in state-space form. Some of these
forms have names.

Controller Canonical Form

Define a dummy variable, X

X = ⎛
⎝

1
s4+b3s3+b2s2+b1s+b0

⎞
⎠U

Y = (a3s3 + a2s2 + a1s + a0)X
Solve for the highest derivative of X

s4X = U − b3s3X − b2s2X − b1sX − b0X
Given the 4th derivative of X, integrate four times to get X

1

s

1

s

1

s

1

s

XX'X''X'''X''''

From the dynamics, X''' is a linear combination of the input (U) and the derivatives of X:

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 5 January 25, 2019

1

s

1

s

1

s

1

s

XX'X''X'''X''''

-b0

-b1

-b2
-b3

Now that you have X and its derivatives, create Y

1

s

1

s

1

s

1

s

XX'X''X'''X''''

-b0

-b1

-b2
-b3

-b0

-b0

-b0

-b0

U

Y

x1x2x3x4
a0

a1

a2

a3

Block Diagram for Controller Canonical Form

This results in the following state-space form, called controller canonical form

s

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x1

x2

x3

x4

⎤

⎦

⎥
⎥

⎥

⎥
⎥
=

⎡

⎣

⎢
⎢

⎢

⎢
⎢

0 1 0 0
0 0 1 0
0 0 0 1
−b0 −b1 −b2 −b3

⎤

⎦

⎥
⎥

⎥

⎥
⎥

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x1

x2

x3

x4

⎤

⎦

⎥
⎥

⎥

⎥
⎥
+

⎡

⎣

⎢
⎢

⎢

⎢
⎢

0
0
0
1

⎤

⎦

⎥
⎥

⎥

⎥
⎥
U

Y = ⎡⎣ a0 a1 a2 a3 ⎤⎦X + [0]U

Controller canonical form has some nice properties:
The transfer function can be found by inspection: the numerator and denominator polynomials appear in
the A and C matrices
You can control (set to any value) all of the states with input, U.

Controller canonical form also has some of the worst numerical properties.

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 6 January 25, 2019

Observer Canonical Form

Given a system

sX = AX + BU

Y = CX +DU
the transfer function from U to Y is

Y = ⎛
⎝C(sI − A)−1B +D⎞

⎠U

For a single-input single-output (SISO) system this is also

Y = ⎛
⎝C(sI − A)−1B +D⎞

⎠
T
U

Y = ⎛
⎝B

T(sI − AT)−1CT +DT⎞
⎠U

Another perfectly valid representation for a system is to let

AT → A

BT → C

CT → B
For example, the 4th-order system from before becomes

s

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x1

x2

x3

x4

⎤

⎦

⎥
⎥

⎥

⎥
⎥
=

⎡

⎣

⎢
⎢

⎢

⎢
⎢

0 0 0 −b0

1 0 0 −b1

0 1 0 −b2

0 0 1 −b3

⎤

⎦

⎥
⎥

⎥

⎥
⎥

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x1

x2

x3

x4

⎤

⎦

⎥
⎥

⎥

⎥
⎥
+

⎡

⎣

⎢
⎢

⎢

⎢
⎢

a0

a1

a2

a3

⎤

⎦

⎥
⎥

⎥

⎥
⎥
U

Y = ⎡⎣ 0 0 0 1 ⎤⎦X + [0]U
This is called observer canonical form: from the output (Y) you can determine all of the states through
differentiation. The block-diagram representation for this system is:

1

s

1

s

1

s

1

s

U

Yx1 x2 x3 x4

-b0 -b1 -b2 -b3

a0 a1 a2 a3

Block Diagram for Observer Canonical Form

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 7 January 25, 2019

Cascade Form

If you have real poles, you can write the transfer function as

Y = ⎛
⎝

a4+a3(s+p4)+a2(s+p3)(s+p4)+a1(s+p2)(s+p3)(s+p4)
(s+p1)(s+p2)(s+p3)(s+p4)

⎞
⎠U

For this system, you could write it as four cascaded 1st-order systems

x1 = ⎛
⎝

1
s+p1

⎞
⎠U

x2 = ⎛
⎝

1
s+p2

⎞
⎠X1

x3 = ⎛
⎝

1
s+p3

⎞
⎠X2

x4 = ⎛
⎝

1
s+p4

⎞
⎠X3

Y = a4x4 + a3x3 + a2x2 + a1x1

The state-space model is

s

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x1

x2

x3

x4

⎤

⎦

⎥
⎥

⎥

⎥
⎥
=

⎡

⎣

⎢
⎢

⎢

⎢
⎢

−p1 0 0 0
1 −p2 0 0
0 1 −p3 0
0 0 1 −p4

⎤

⎦

⎥
⎥

⎥

⎥
⎥

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x1

x2

x3

x4

⎤

⎦

⎥
⎥

⎥

⎥
⎥
+

⎡

⎣

⎢
⎢

⎢

⎢
⎢

1
0
0
0

⎤

⎦

⎥
⎥

⎥

⎥
⎥
U

Y = ⎡⎣ a1 a2 a3 a4 ⎤⎦X

The block-diagram representation for this is:

1

s

1

s

1

s

1

s

U Y

-p1 -p2 -p3 -p4

x1 x2 x3 x4 a4

a3

a2

a1

Block Diagram for Cascade Canonical Form

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 8 January 25, 2019

Jordan (Diagonal) Canonical Form

If you use partial fraction expansion

Y = ⎛
⎝

a3s3+a2s2+a1s+a0

s4+b3s3+b2s2+b1s+b0

⎞
⎠U

becomes

Y = ⎛
⎝
⎛
⎝

c1
s+p1

⎞
⎠ +

⎛
⎝

c2
s+p2

⎞
⎠ +

⎛
⎝

c3
s+p3

⎞
⎠ +

⎛
⎝

c4
s+p4

⎞
⎠
⎞
⎠U

Treat this as four coupled systems

x1 = ⎛
⎝

c1
s+p1

⎞
⎠U

x2 = ⎛
⎝

c2
s+p2

⎞
⎠U

x3 = ⎛
⎝

c3
s+p3

⎞
⎠U

x4 = ⎛
⎝

c4
s+p4

⎞
⎠U

with

Y = x1 + x2 + x3 + x4

In state-space

s

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x1

x2

x3

x4

⎤

⎦

⎥
⎥

⎥

⎥
⎥
=

⎡

⎣

⎢
⎢

⎢

⎢
⎢

−p1 0 0 0
0 −p2 0 0
0 0 −p3 0
0 0 0 −p4

⎤

⎦

⎥
⎥

⎥

⎥
⎥

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x1

x2

x3

x4

⎤

⎦

⎥
⎥

⎥

⎥
⎥
+

⎡

⎣

⎢
⎢

⎢

⎢
⎢

c1

c2

c3

c4

⎤

⎦

⎥
⎥

⎥

⎥
⎥
U

Y = ⎡⎣ 1 1 1 1 ⎤⎦X

with the state-space model being

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 9 January 25, 2019

1

s

-p1

c1 x1

1

s

-p2

c2 x2

1

s

-p3

c3 x3

1

s

-p4

c4 x4

YU

Block Diagram for Jordan (Diagonal) Canonical Form

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 10 January 25, 2019

Similarity Transforms
In state-space, a dynamic system is written as

sX = AX + BU

Y = CX + DU

with the transfer function from U to Y being

Y = ⎛
⎝C(sI − A)−1B +D⎞

⎠U

From the previous lecture, there are several ways to put a system into state-space form, resulting in
Controller canonical form
Observer canonical form
Cascade form
Jordan form

to name a few. What is the relationship between each of these forms?

Similarity Transforms:
Let Z be a change of variable defined as

X = TZ

or

Z = T−1X

where T is an NxN non-singular matrix called the similarity transform. Substituting for X

sTZ = ATZ + BU

Y = CTZ + DU

or

sZ = T−1ATZ + T−1BU

Y = CTZ + DU

You can convert from one canonical form to another using a similarity transform, T. The transformed system is

(A, B, C, D) ⇒ (T1AT, T−1B, CT, D)

The challenge is in finding the similarity transform.

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 11 January 25, 2019

Case 1: Converting to and from Jordan Form
This is the easiest transform. Almost by definition, the transformation matrix is the Eigenvector matrix

For example, convert the following system to Jordan form:

sX =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

−2.1 1 0 0
1 −2.1 1 0
0 1 −2.1 1
0 0 1 −1.1

⎤

⎦

⎥
⎥

⎥

⎥
⎥
X +

⎡

⎣

⎢
⎢

⎢

⎢
⎢

1
0
0
0

⎤

⎦

⎥
⎥

⎥

⎥
⎥
U

Y = ⎡⎣ 0 0 0 1 ⎤⎦X + [0]U

In Matlab:

>> A = [-2.1,1,0,0;1,-2.1,1,0;0,1,-2.1,1;0,0,1,-1.1]

 -2.1000 1.0000 0 0
 1.0000 -2.1000 1.0000 0
 0 1.0000 -2.1000 1.0000
 0 0 1.0000 -1.1000

>> B = [1;0;0;0]

 1
 0
 0
 0

>> C = [0,0,0,1]

 0 0 0 1

>> D = 0;
>> [M,N] = eig(A)

M = eigenvectors

 -0.4285 -0.6565 0.5774 0.2280
 0.6565 0.2280 0.5774 0.4285
 -0.5774 0.5774 -0.0000 0.5774
 0.2280 -0.4285 -0.5774 0.6565

N = eigenvalues

 -3.6321 0 0 0
 0 -2.4473 0 0
 0 0 -1.1000 0
 0 0 0 -0.2206

The similarity transform, T, is simply the eigenvector matrix:
>> T = M;

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 12 January 25, 2019

The system in state-variable Z becomes:

>> Az = inv(T)*A*T

 -3.6320 0 0 0
 0 -2.4470 0 0
 0 0 -1.1000 0
 0 0 0 -0.2210

>> Bz = inv(T)*B

 -0.4285
 -0.6565
 0.5774
 0.2280

>> Cz = C*T

 0.2280 -0.4285 -0.5774 0.6565

>> Dz = D

 0

or

 sZ =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

−3.632
−2.4470

−1.1
−0.22

⎤

⎦

⎥
⎥

⎥

⎥
⎥
Z +

⎡

⎣

⎢
⎢

⎢

⎢
⎢

−0.4285
−0.6565
0.5774
0.2280

⎤

⎦

⎥
⎥

⎥

⎥
⎥
U

Y = ⎡⎣ 0.2280 −0.4285 −0.5774 0.6565 ⎤⎦Z + [0]U

which is Jordan canonical form.

Note that the transfer function doesn't change:

>> Gx = ss(A,B,C,D);

>> zpk(Gx)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

>> Gz = ss(Az,Bz,Cz,Dz);

>> zpk(Gz)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 13 January 25, 2019

Case 2: Converting to Output and its Derivatives

Suppose you'd like the states to be the output and its derivatives. Let the states be

Z =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

y
y
y
y

⎤

⎦

⎥
⎥

⎥

⎥
⎥

or

Z =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

C
CA
CA2

CA4

⎤

⎦

⎥
⎥

⎥

⎥
⎥
X = T−1X

then

>> T = inv([C; C*A; C*A*A; C*A*A*A])

 1.6510 7.0300 5.3000 1.0000
 1.3100 3.2000 1.0000 0
 1.1000 1.0000 0 0
 1.0000 0 0 0

>> Az = inv(T)*A*T

 0 1.0000 0 0
 0 0 1.0000 0
 0 0 0 1.0000
 -2.1570 -13.2140 -17.1600 -7.4000

>> Bz = inv(T)*B

 0
 0.0000
 0
 1.0000

>> Cz = C*T

 1 0 0 0

>> Dz = D

 0

This representation is convenient since each state is the output and its derivatives. Note again that the eigenvalues
don't change with a similarity transform

>> eig(A)'

 -3.6321 -2.4473 -1.1000 -0.2206

>> eig(Az)'

 -3.6321 -2.4473 -1.1000 -0.2206

nor does the transfer function

>> Gx = ss(A,B,C,D);

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 14 January 25, 2019

>> zpk(Gx)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

>> Gz = ss(Az,Bz,Cz,Dz);

>> zpk(Gz)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

Case 3: Converting to a difference in states:
Let the states be

Z =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x1 − x2

x2 − x3

x3 − x4

x4

⎤

⎦

⎥
⎥

⎥

⎥
⎥
=

⎡

⎣

⎢
⎢

⎢

⎢
⎢

1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1

⎤

⎦

⎥
⎥

⎥

⎥
⎥
X = T−1X

In Matlab
>> Ti = [1,-1,0,0;0,1,-1,0;0,0,1,-1;0,0,0,1]

 1 -1 0 0
 0 1 -1 0
 0 0 1 -1
 0 0 0 1

>> T = inv(Ti)

 1 1 1 1
 0 1 1 1
 0 0 1 1
 0 0 0 1

>> Az = inv(T)*A*T

 -3.1 0 -1.0 -1.0
 1.0 -2.1 1.0 0
 0 1.0 -2.1 0
 0 0 1.0 -0.1

>> Bz = inv(T)*B

 1
 0
 0
 0

>> Cz = C*T

 0 0 0 1

>> Dz = D

 0

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 15 January 25, 2019

Again, the eigenvalues don't change with a similarity transform
>> eig(A)'

 -3.6321 -2.4473 -1.1000 -0.2206

>> eig(Az)'

 -3.6321 -2.4473 -1.1000 -0.2206

and neither does the transfer function

>> Gx = ss(A,B,C,D);

>> zpk(Gx)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

>> Gz = ss(Az,Bz,Cz,Dz);

>> zpk(Gz)

 1

(s+3.632) (s+2.447) (s+1.1) (s+0.2206)

Conclusion

There are an infinite many ways to represent a system in state-space. All related by a similarity transform.

Each transformed system has the same eigenvalues: how you represent the system doesn't affect how the energy
in the system moves about.

It may be difficult to determine what the similarity transform is that relates two similar systems.

NDSU Canonical Forms and Similarity Transforms ECE 463

JSG 16 January 25, 2019

