
MIMO LQG Control
(work in progress)

Multi-Input, Multi-Output Systems
One problem with Bass Gura (pole placement) is that there is only a closed-form solution for single-input
systems. When you have multiple inputs, you have to either turn off some inputs (making it a single-input
system) or comine the inputs (which may be sub-optimal).

For example, consider the problem of stabilizing a cart and pendulum where you can apply a torque to the
pendulum:

Q

X

1kg

1kg

1m

F

s

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x
θ
sx
sθ

⎤

⎦

⎥
⎥

⎥

⎥
⎥
=

⎡

⎣

⎢
⎢

⎢

⎢
⎢

0 0 1 0
0 0 0 1
0 −19.6 0 0
0 29.4 0 0

⎤

⎦

⎥
⎥

⎥

⎥
⎥

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x
θ
sx
sθ

⎤

⎦

⎥
⎥

⎥

⎥
⎥
+

⎡

⎣

⎢
⎢

⎢

⎢
⎢

0
0
1
−1

⎤

⎦

⎥
⎥

⎥

⎥
⎥
F +

⎡

⎣

⎢
⎢

⎢

⎢
⎢

0
0
−2
3

⎤

⎦

⎥
⎥

⎥

⎥
⎥
T

Bass-Gura is unable to deal with two inputs since this results in eight feedback gains:

⎡

⎣
⎢

F
T
⎤

⎦
⎥ =

⎡

⎣
⎢

k11 k12 k13 k14

k21 k22 k23 k24

⎤

⎦
⎥

⎡

⎣

⎢
⎢

⎢

⎢
⎢

x
θ
sx
sθ

⎤

⎦

⎥
⎥

⎥

⎥
⎥

with four constraints (the four closed-loop poles of A - BKx).

With LQR control, in contrast, multiple inputs can be dealt automatically: the algorithm finds the feedback gains
to minimize the cost function. If there are more gains available, the additional gains allow you to reduce the cost.

NDSU LQG Control ECE 463

JSG 1 rev October 1, 2015

Effect of the Weightings on R:
R tells you how much cost is associated with each input. By adjusting each term, you can share the control effort
or shift the control effort from one input to the other.

Example: Find the optimal feedback gains for

Q = CTC =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎦

⎥
⎥

⎥

⎥
⎥

R =
⎡

⎣
⎢

1 0
0 1

⎤

⎦
⎥

>> Q = diag([1,0,0,0]);
>> R = diag([1,1]);
>> Kx = lqr(A, B, Q, R)

 0.8816 -4.6251 2.0757 0.4243 force input
 0.4720 18.4399 1.3875 4.2661 torque input

>> eig(A - B*Kx)

 -5.4250 + 0.1943i
 -5.4250 - 0.1943i
 -0.4124 + 0.4031i
 -0.4124 - 0.4031i

Note that Kx is a 2x4 matrix. Both inputs are being used (the rows). The gains are comperable - each input has
the same weighting. The closed-loop poles are the 'optimal' place to put the poles with this cost function.

Repeat for

R =
⎡

⎣
⎢

1000 0
0 1

⎤

⎦
⎥

>> R = diag([1000,1]);
>> Kx = lqr(A, B, Q, R)

 0.0316 0.0147 0.4352 0.2889 force input: weight = 1000
 -0.0473 19.5890 0.2619 3.7911 torque input: weight = 1

>> eig(A - B*Kx)

 -5.4253 + 0.1843i
 -5.4253 - 0.1843i
 -0.0725 + 0.0725i
 -0.0725 - 0.0725i

Note that the first input (force) has smaller feedback gains due to the large weighting (cost) associated with this
input. The system is still stable - but slower (due to using less input).

NDSU LQG Control ECE 463

JSG 2 rev October 1, 2015

Repeat for

R =
⎡

⎣
⎢

1 0
0 1000

⎤

⎦
⎥

>> R = diag([1,1000]);
>> Kx = lqr(A, B, Q, R)

 -0.9755 -68.2469 -2.7818 -14.3206 force input: weight = 1
 0.0070 0.2406 0.0184 0.0558 torque input: weight = 1000

>> eig(A - B*Kx)

 -5.4218 + 0.0618i
 -5.4218 - 0.0618i
 -0.4129 + 0.4036i
 -0.4129 - 0.4036i

Note here that the second input (with a weighting of 1000) has much smaller gains. With a cost of 1000x more
than the first input, the control law tries to minimize these gains.

Also note that the system is again stable. For the cost to be finite, the system can't go to infinity (i.e. must be
stable).

One of the beauties of LQR control is, if you have multiple inputs, you can use any and all of them. You can also
adjust how much control effort comes from each input through the weightings of R.

Effect on the Weightings of Q
Q penalizes the states: higher weightings force the corresponding state to be close to zero (or its final value).

Example: Design a control law so that

The cart position (x) has a 2% settling time less than 3 seconds
With less than 5% overshoot, and
The angle remains less than 20 degrees (0.35 radians)

Start with Q weighting the cart position (x):

Q =

⎡

⎣

⎢
⎢

⎢

⎢
⎢

1
0

0
0

⎤

⎦

⎥
⎥

⎥

⎥
⎥

R =
⎡

⎣
⎢

1 0
0 1

⎤

⎦
⎥

First, find the feedback gains, Kx:

NDSU LQG Control ECE 463

JSG 3 rev October 1, 2015

>> Q = diag([1,0,0,0]);
>> R = diag([1,1]);
>> Kx = lqr(A, B, Q, R)

 0.8816 -4.6251 2.0757 0.4243
 0.4720 18.4399 1.3875 4.2661

This system has two inputs (force and torque). The DC gain to two outputs (position and angle) are:

>> DC = -Cxq*inv(A-B*Kx)*B

 0.8816 0.4720
 -0.0482 0.0900

If you want to drive the two outputs separately, Kr is the inverse of the 2x2 DC gain:

>> Kr = inv(DC)

 0.8816 -4.6251
 0.4720 8.6399

meaning:

⎡

⎣
⎢

F
T
⎤

⎦
⎥ = Kr

⎡

⎣
⎢

xref

θref

⎤

⎦
⎥

Assuming angle is always supposed to be zero, you can simplify this by using only the first column of Kr:

⎡

⎣
⎢

F
T
⎤

⎦
⎥ = Kr

⎡

⎣
⎢

xref

0
⎤

⎦
⎥

>> Kr = Kr(:,1)

 0.8816
 0.4720

The step response from Xref is then:

>> D = zeros(2,1);
>> G = ss(A - B*Kx, B*Kr, Cxq, D);
>> y = step(G,t);
>> plot(t,y)

NDSU LQG Control ECE 463

JSG 4 rev October 1, 2015

Step Response to Xref: Position (blue) and Angle (green). Q = diag(1 0 0 0) R = diag(1 1)

This is a bit slow. To speed it up, increase the weighting on position (x). Repeating the design process:

>> Q = diag([1000,0,0,0]);
>> R = diag([1,1]);
>> Kx = lqr(A, B, Q, R)

 25.9388 5.6056 10.9015 5.9345
 -18.0881 17.8385 0.7840 4.7834

>> DC = -Cxq*inv(A-B*Kx)*B

 0.0259 -0.0181
 0.0584 0.0837

>> Kr = inv(DC)

 25.9388 5.6056
 -18.0881 8.0385

>> Kr = Kr(:,1)

 25.9388
 -18.0881

>> G = ss(A - B*Kx, B*Kr, Cxq, D);
>> y = step(G,t);
>> plot(t,y)

NDSU LQG Control ECE 463

JSG 5 rev October 1, 2015

Step Response to Xref: Position (blue) and Angle (green). Q = diag(1000 0 0 0) R = diag(1 1)

On the good side, the speed is less than 3 seconds. On the bad side, the angle reaches -0.8 radians (45 degres).
This may be excessive.

To reduce the angle, increase the weighting on the second state (angle).

>> Q = diag([1000,1000,0,0]);
>> R = diag([1,1]);
>> Kx = lqr(A, B, Q, R)

 31.1386 5.7709 12.8486 7.1439
 -5.5123 42.3996 3.2744 7.5397

>> DC = -Cxq*inv(A-B*Kx)*B

 0.0311 -0.0055
 0.0053 0.0297

>> Kr = inv(DC)

 31.1386 5.7709
 -5.5123 32.5996

>> Kr = Kr(:,1)

 31.1386
 -5.5123

>> G = ss(A - B*Kx, B*Kr, Cxq, D);
>> y = step(G,t);

NDSU LQG Control ECE 463

JSG 6 rev October 1, 2015

>> plot(t,y)

Step Response to Xref: Position (blue) and Angle (green). Q = diag(1000 1000 0 0) R = diag(1 1)

Now the system is reasonable:

The position reaches its final value in about 3 seconds
With 2.6% overshoot
The maximum angle is -0.3 radians (17 degrees)

Example: Design a feedback controller for a gantry system such that

The step response for a 10m step input is as quick as possible, and
The maximum swing in less than 10 degrees

The net control law is:

Kx = 31.1386 5.7709 12.8486 7.1439
 -5.5123 42.3996 3.2744 7.5397

Kr = 31.1386
 -5.5123

⎡

⎣
⎢

F
T
⎤

⎦
⎥ = KrR −KxX

NDSU LQG Control ECE 463

JSG 7 rev October 1, 2015

