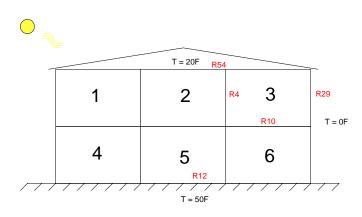
MIMO LQG Control with Servo Compensators

Work In Progress


Multi-Input, Multi-Output Systems

With one input, you can stabilize a system with full-state feedback and you can control one output. With N inputs, however, you can control N outputs.

For example, consider the problem of controlling the temperature in a 6-apartment building, where each room has a heating unit (U1..U6) and there is an external disturbance from the sun shining on rooms 1 and 4 (adding one unit of heat).

This can be modeled as a 6-element RC filter, where

- R is the thermal resistance between rooms (or outside the building),
- C is the thermal capacitance of each room, and
- The input is the heat added to the room through U or from solar heating:

6-Room Apartment Buiilding

Case 1: Single Input System. Assume all heaters are tied together so that they all output the same amount of heat. In this case, the dynamics become:

$$sX = \begin{bmatrix} -0.403 & 0.25 & 0 & 0.1 & 0 & 0 \\ 0.25 & -0.683 & 0.25 & 0 & 0.1 & 0 \\ 0 & 0.25 & -0.468 & 0 & 0 & 0.1 \\ 0.1 & 0 & 0 & -0.468 & 0.25 & 0 \\ 0 & 0.1 & 0 & 0.25 & -0.683 & 0.25 \\ 0 & 0 & 0.1 & 0 & 0.25 & -0.468 \end{bmatrix} X + \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} U + \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} 10W$$

With a single input, you can control a single output. Assume the thermostat is placed in room #2.

Add a servo-compensator to control the temperature of room #2.

$$\begin{bmatrix} sX\\ sZ \end{bmatrix} = \begin{bmatrix} A & 0\\ C & 0 \end{bmatrix} \begin{bmatrix} X\\ Z \end{bmatrix} + \begin{bmatrix} B\\ 0 \end{bmatrix} U + \begin{bmatrix} 0\\ -1 \end{bmatrix} R + \begin{bmatrix} B_d\\ 0 \end{bmatrix} d$$

Since you are controlling one ouput (the average of all six), you only need one input.

Option 1: Apply the same amount of heat to all six heaters (equal heating bill for all tenants)

Input the system dynamics:

>> A = [-0.403,0.25,0,0.1,0,0; 0.25,-0.683,0.25,0,0.1,0; 0,0.25,-0.468,0,0,0.1; 0.1, 0 0 -0.468 0.25 0; 0 0.1 0 0.25 -0.683 0.25; 0 0 0.1 0 0.25 -0.468]; >> B = [1 1 1 1 1 1]'; >> C = [0 1 0 0 0 0]

>> A7 = [A, zeros(6,1); C, 0]

Add a servo-compensator to control the temperature of room #2:

	-0.4030	0.2500	0	0.1000	0	0	:	0
	0.2500	-0.6830	0.2500	0	0.1000	0	:	0
	0	0.2500	-0.4680	0	0	0.1000	:	0
	0.1000	0	0	-0.4680	0.2500	0	:	0
	0	0.1000	0	0.2500	-0.6830	0.2500	:	0
	0	0	0.1000	0	0.2500	-0.4680	:	0
-							-	
	0	1.0000	0	0	0	0	:	0

Design a feedback control law. Assume all rooms apply the same heat:

```
>> B7 = [B; 0]
     1
     1
     1
     1
     1
     1
      _
    _
     0
>> Kx = lqr(A7, B7, diag([0,0,0,0,0,0,1e3]), 1)
    0.2434
              7.2839
                         0.2428
                                    0.0019
                                               0.0959
                                                         0.0020
                                                                   31.6228
```

```
>> eig(A7 - B7*Kx)
-3.9765 + 3.9762i
-3.9765 - 3.9762i
-1.0285
-0.8545
-0.5519
-0.3057
-0.3495
```

If R is set to 70F, the temperature in each room (with no disturbance) is

```
>> Br = [0;0;0;0;0;0;-1]
     0
     0
     0
     0
     0
     0
    -1
>> DC = -inv(A7 - B7*Kx)*(Br*70)
   75.2178
   70.0000
                 Room #2 is controlled to 70F as desired
   64.2711
   64.9276
   66.1773
   62.5886
  -17.6046
>> U = -K7*DC
    6.3200
```

If the sun is shining on rooms 1 and 4 with 10 Watt of heat, then

Two Inputs:

With a single input, you can only control one output. If you have two inputs, you can control two outputs. Assume you separate the inputs into 1st and 2nd floor:

$$sX = \begin{bmatrix} -0.403 & 0.25 & 0 & 0.1 & 0 & 0 \\ 0.25 & -0.683 & 0.25 & 0 & 0.1 & 0 \\ 0 & 0.25 & -0.468 & 0 & 0 & 0.1 \\ 0.1 & 0 & 0 & -0.468 & 0.25 & 0 \\ 0 & 0.1 & 0 & 0.25 & -0.683 & 0.25 \\ 0 & 0 & 0.1 & 0 & 0.25 & -0.468 \end{bmatrix} X + \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} U + \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} 10W$$

With two inputs, you can control two outputs. Let those outputs be room 2 and 4:

<i>V</i> –	x_2	_	$\left[\begin{array}{ccc} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right]$	V
1 -	<i>x</i> ₄			1

Design a servo for each output:

$$\begin{bmatrix} sX\\ sz_1\\ sz_2 \end{bmatrix} = \begin{bmatrix} A & 0 & 0\\ C_1 & 0 & 0\\ C_2 & 0 & 0 \end{bmatrix} \begin{bmatrix} X\\ z_1\\ z_2 \end{bmatrix} + \begin{bmatrix} B\\ 0\\ 0 \end{bmatrix} U + \begin{bmatrix} 0 & 0\\ -1 & 0\\ 0 & -1 \end{bmatrix} R + \begin{bmatrix} B_d\\ 0\\ 0 \end{bmatrix} d$$

Find a feedback control law: use LQR with Q = 100I, R = 1

```
>> Az = [0,0;0,0]
Az =
     0
            0
     0
            0
>> C
C =
     0
            1
                  0
                         0
                                0
                                      0
>> C = [0,1,0,0,0,0;0,0,0,1,0,0]
C =
     0
                                      0
            1
                  0
                         0
                                0
            0
                  0
                         1
     0
                                0
                                      0
```

>> P = [1]	1 1 0 0 0 0 0	0 0 1 1 1 1	1				
>> в = [⊥,.	1,1,0,0,0;0	, ∪ , ∪ , ⊥ , ⊥ , ⊥]					
1 1 0 0 0	0 0 1 1						
>> C = [0,2	1,0,0,0,0;0	,0,0,1,0,0]					
0 0	1 0 0 0	0 0 1 0	0 0				
>> A8 = [A	, zeros(6,2); C, Az]					
-0.4030 0.2500 0.1000 0	0.2500 -0.6830 0.2500 0.1000 0	0 0.2500 -0.4680 0 0 0.1000	0.1000 0 -0.4680 0.2500 0	0 0.1000 0 0.2500 -0.6830 0.2500	0 0.1000 0.2500 -0.4680	: 0 : 0 : 0 : 0	0 0 0 0 0
0	1.0000	0 0	0		0 0		0 0
1 1 0 0 0 0 0	; zeros(2,2 0 0 0 1 1 1 0 0						
	zeros(6,2);	-eye(2,2)]					
0 0 0 0 -1 0	0 0 0 0 0 0 -1						

>> Bd = [1;0;0;1;0;0;0;0] 1 sun shines on apt #1 0 0 1 and #40 0 0 0 >> Kx = lqr(A8, B8, diag([0,0,0,0,0,0,1e3,1e3]), diag([1,1])) Κz Κx : 0.2436 0.2431 0.0002 0.0957 0.0020 : -0.0001 7.2856 31.6228 7.4939 0.0980 0.0004 -0.0005 0.2432 0.0024 : 0.0001 31.6228 >> eig(A8 - B8*Kx) -0.3492 -0.5522 -1.0354 -0.8352 -3.9770 + 3.9757i -3.9770 - 3.9757i -3.9794 + 3.9733i -3.9794 - 3.9733i

The steady-state response on a cloudy day (no disturbance)

>> DC = -inv(A8 - B8*Kx)*Br*[70; 80] 75.1517 apt #2 is tracking its setpoint 70.0000 64.2146 80.0000 apt #4 is tracking its setpoint 81.8227 77.6630 -17.6043 -20.1253 U = -Kx*DC4.7861 2nd floor is adding 4.78W of heat in each apt 9.4692 1st floor is adding 9.46W of heat in each apt The steady-state response on a sunny day (with the disturbance)

>> DC = -inv(A8 - B8*Kx)*(Br*[70; 80] + Bd*10)
96.8968
70.0000 apt #2 remains 70F
55.6211
80.0000 apt #4 remains 80F
61.3114
49.8129
-17.6028
-19.8102

The servo compensators are doing their job: they track a constant set point and reject constant disturbances.

The input in this case is:

>> -Kx*DC				
3.5494 2.4225			floor floor	-

Six Inputs:

With six inputs, you can control six outputs. Assume each room controls its own heater:

>> A

-0.4 0.2 0.1	500 - 0 000	0.2500 0.6830 0.2500 0.1000 0	-0.4	0 2500 4680 0 0 L000	0.1000 0 -0.4680 0.2500 0	0 0.1000 0 0.2500 -0.6830 0.2500	0 0.1000 0.2500 -0.4680
>> B =	еуе(б,б)					
1 0 0 0 0 0	0 1 0 0 0	0 0 1 0 0 0	0 0 1 0 0	0 0 0 1 0	0 0 0 0 1		
>> C =	eye(6,6)					
1 0 0 0 0	0 1 0 0 0	0 0 1 0 0	0 0 1 0 0	0 0 0 1 0	0 0 0 0 0 1		

>> A12	= [A,	zeros(6,6);	C, ze	ros(6,	6)]					
$ \begin{array}{c} -0.4030\\ 0.2500\\ 0\\ 0\\ 0\\ 1.000\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0.2500 -0.6830 0.2500 0.1000 0 1.0000 0 0 0 0 0 0 0	0 0.2500 -0.4680 0 0.1000 0 1.0000 0 0 0 0 0	0.1000 0 -0.4680 0.2500 0 0 1.0000 0 0 0 0 0 0 0	0 0.1000 0.2500 -0.6830 0.2500 0 0 0 1.0000 0	0 0.1000 0.2500 -0.4680 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
>> B12	= [B;	zeros(6,6)]								
1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 0 0 0 0 0	0 0 0 1 0 0 0 0 0 0 0						
>> Br =	= [zero	os(6,6)	; -eye	(6,6)]							
0 0 0 0 0 0 -1 0 0 0 0 0	0 0 0 0 0 0 0 0 -1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ -1\\ 0 \end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0						
>> Bd =	= [1 0	0 1 0	0 0 0	0 0 0	0];						
>> Kx =	0.2330	(A12, B	0.0945	0.0031	0.0000	31.6228	0.0000	-0.0000	-0.0000	-0.0000	0.0000
0.2330 0.0039 0.0945 0.0031 0.0000	7.3074 0.2320 0.0031 0.0915 0.0031	0.2320 7.5030 0.0000 0.0031 0.0941	0.0031 0.0000 7.5030 0.2320 0.0039	0.0915 0.0031 0.2320 7.3074 0.2320	0.0031 0.0941 0.0039 0.2320 7.5030	0.0000 -0.0000 0.0000 -0.0000 0.0000	31.6228 -0.0000 0.0000 0.0000 0.0000	-0.0000 31.6228 0.0000 0.0000 0.0000	0.0000 -0.0000 31.6228 -0.0000 -0.0000	0.0000 0.0000 -0.0000 31.6228 0.0000	0.0000 -0.0000 0.0000 -0.0000 31.6228

>> eig(Al	.2 -	B12*Kx)
-4.0102	+	3.9422i
-4.0102	-	3.9422i
-3.9985	+	3.9541i
-3.9985	-	3.9541i
-3.9860	+	3.9667i
-3.9860	-	3.9667i
-3.9766	+	3.9761i
-3.9766	-	3.9761i
-3.9790	+	3.9737i
-3.9790	-	3.9737i
-3.9803	+	3.9724i
-3.9803	-	3.9724i

Steady-state response on a cloudy day (no disturbance)

>> DC = -inv(A12 - B12*Kx)*(Br*[60 65 70 75 80 85]') 60.0000 Apt #1 tracks its set point 65.0000 70.0000 75.0000 80.0000 85.0000 Apt #6 tracks its set point -15.0858 -16.3461 -17.6070 -18.8658 -20.1184 -21.3826 >> U = -Kx*DC 0.4300 Watts of heat at apt #1 3.8950 8.0100 9.1000 8.1400 12.7800 Watts of heat at apt #6

Stead-State Response on a Sunny Day (with a disturbance)

>> DC = -inv(A1	.2 - B12*Kx)*(Br*[60 65 70 75 80 85]' + Bd*10)
60.0000 65.0000 70.0000 75.0000 80.0000	Apt #1 still tracks its set point
85.0000 -14.7696 -16.3461 -17.6070 -18.5496 -20.1184 -21.3826	Apt #6 still tracks its set point
>> U = -Kx*DC -9.5700 3.8950 8.0100	Watts of heat added for apt #1 (negative means cooling)
-0.9000 8.1400	

12.7800 Watts of heat added for apt #6

>>