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Static Systems:
X
Y=k*X
G

Static System:
* Y looks just like X, only scaled

This means that:
« There 1s no memory:

- The previous values of Y and X do not matter
« A sine wave input produces a sine wave output
« A square wave input produces a square wave output

« A random input produces the identical random output, only changed in
amplitude.




Dynamic Systems
Y=G(s) X

Dynamic systems are described by
differential equations.
« Dynamics systems have memory:
- y(0) 1s needed to find y(t)
« Dynamic systems change the shape of the input
- The gain changes with frequency
- An input that is not a sine wave is distorted.




Differential Equations and Transfer Functions
Assume x(t) and y(t) are related by a differential equation:

v +ay’ + by =cx” +dx’ +ex

Assume all functions are in the form of
y = e
then differentiation becomes multiplication by 's'

dy _ st —
—=5-e" =ysy.

With this assumption,
s?Y +asY+bY =cs*’X +dsX + eX

Y = (Cs2+ds+e>X —G(s)- X

s2+as+b




Example: Find the transfer function relating X and Y
v + 3y +2y" + 10y = 20x" + 5x

(s° +3s%+ 25+ 10)Y = (205 + 5)X

y = (20s+5) X
(s3+3s2+2s+10)

(20s+5)
G(s) =
(S) [(s3+352+25+10)j




Steady-State Solution for Sinusoidal Inputs (phasors):
- If x(t) 1s a sinusoid, phasors can be used to find y(t)

Example: Find y(t) assuming

r'= <s2+220(1‘(-)|—100) X x(7) = 4 sin(207)
Solution: s =320 X=0-j4
_ 200 o .
Y= <s2+2Os+100) s=j20(0 j4) =—-1.280 +;0.960

y(1) =—1.280 cos(207) — 0.960 sin(201)
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Transient Solutions: LaPlace Transforms
If the input is zero for t<0

2.25

x =x(t) - u(?)
where u(t) is the unit step function | {\ vt
1 t’ > O 1.75
f) = -
u( ) { 0 <0 15
LaPlace transforms are used to find y(t). ' | X(t)
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Signals and Systems vs. Modern Control

In ECE 343 Signals, you looked at two-sided two-dimensional LaPlace
transforms.

« For image processing, you can go left and right (two-sided)
« For image processing, you can also go up / down (two-dimenstional)

In ECE 463, t represents time
« Time is one-dimensional and
- Time always goes forward (single sided).

Hence, in this class, we look at the mundane case of single-sided
one-dimensional LaPlace transforms.




Table of LaPlace Transforms

Only four LaPlace transforms are needed for this class
- With partial fraction expansion, you can then solve any system.

Table 1: Common LaPlace Transforms
Name Time: y(t) LaPlace: Y(s)
delta (impulse) 8(t) 1
unit step u(t) 1
S
exponential . bt _a_
a- e u(r) 7
damped sinusoid 2a - e Pcos(ct — 0)u(r) ( 0’0 ) (aé_e)
s+b+jc s+b—jc




LaPlace Transform Example:
Find y(t):
y'+ 3y + 2y =4x x(t) = u(t)

Solution: Convert to LaPlace notation
(s> +3s+2)Y=4X

Yz( 4 )X
§24354+2

Substitute the LaPlace transform for U(s)

v=(=5)(4)




Factor and use partial fractions to expand
Y(8s)

. 4
Y= (S(S+1)(S+2))

_ (2 —4 2
r=(3)+(5) +(3)

Use the above table to convert back to y(t)
() = (2—4e +2e)u(r)
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Example 2: Find the y(t) given that
Ys)=G-X= <s2+;f+10) . (%)

Solution: Factoring Y(s)

_ 15
Y(s) = ((s)(s+1+j3)(s+1—j3))

Using partial fraction expansion:

_ (15 0.7906£-161.56" 0.79064161.56(’)
Y(s) = ( s ) +( 1473 ) +< s+13

y(£)=1.5+1.5812-¢7"- cos (3t+161.56") for t>0




Dominant Poles

Poles = Energy
- If there are N ways to store energy, you have N poles

If there are thousands of ways to store energy, there are thousands of poles
« Dealing with thousandth order systems i1s cumbersome.

Fortunately, most systems have a few poles which dominate the response

A model which includes the dominant poles will be
- Fairly accurate (good), and
« Low order (also good)




Dominant Pole Example:

Find the step response of

_ 20
Y= ((s+1)(s+10)) X

Solution:

. 20 1) _ (2 —2.222 0.222
Y= ((s+1)(s+10)) (S) B (S) +< s+1 ) T (s+10)

y(£) =2—2.222¢7"+0.222e710% >0

Here, the pole at -1 1s dominantes the pole at -10 for two reasons:
- Its initial condition is 10x larger than the pole at s = -10, and
- Its transient response lasts 10x longer than the pole at s =-10




Ist-Order Approximation
- Keep the dominant pole (s = -1)
« Match the DC gain

( 20 )~<L)
(s+1)(s+10) ) — \ls+1

2nd Order System
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First-Order approximation

Single (real) dominant pole

v=(2)x

DC Gain:

. (_) _a
s+b =0 b

2% Settling Time:
0.02=¢"

—4
Is=+

DC =a/b

Time (seconds)




Example: Sketch the step response

50,000
Y= ((s+3)(s+10)(s+20)(s+50)) X

Solution:
« The DC gain 1s 1.67

50,000 _
((s+3)(s+10)(s+20)(s+50)) 0 =1.67

« The dominant pole 1s s = -3
« Ts =4/3 sec

( 50,000 ) _ ( 5 )
(s+3)(s+10)(s+20)(s+50) )~ \'s+3

5/3

DC =a/b

Time (seconds)




Checking with Matlab

zpk ([1,[-3,-10,-20,-501,50000)

(s+3) (s+10) (s+20) (s+50)
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Example 2: Find G(s)

Ist-Order Approximation
« No oscillations

DC gain =4.3
Ts =0.57 seconds
4
b=-t=170

Putting it together:
G(s) = (%)
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2nd-Order Approximations

Dominant pole 1s complex
« Plus it's complex conjugate

G(s) = k-2 )

52420 o s+05

(o7+02) j

G(s) =

(s+o+H W) (s+0—jMy)
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Now we need 3 parameters (pick 3)

DC Gain
- G(s=0)
1y OS=b/DC
Frequency of Oscillation °
« The complex part of the dominant )
pole ) . | DC dain L~

023 NI
Ts: 2% Settling Time :
 The real part of the dominant pole |

4
- Ty=32

Percent Overshoot
« The angle of the dominant pole

_b _ G
. OS_DC_GXP(WJ

Ts

0.5

. . . . 0""1""2'll-3---|4.
C is the damping ratio e (secods




Example: Determine the step response of

_ ( 20,000 )
— \(s+14j6)(s+1—j6)(s+50)

Solution:

« The dominant poles are s =—1 % j6
« The DC gain 1s 10.81

meaning
 y(t) goes to 10.81 (the DC gain)
« Ts =4 seconds (4/1)
 f(osc) = 6 rad/sec (about 1 Hz)
- £ =0.164, meaning
« There will be 59% overshoot
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Checking in Matlab

20

G3 =
zpk ([1, [-1+3%6,-1-3%6,-50],20000)

20000
(s+50) (s”2 + 2s + 37) A
t = [0:0.001:1071"; I
y3 = step(G3,t); I A~ DC = 10.81
DC = y3(10000) - \/ e
10
DC = 10.8113

ts = 4 seconds

0S = max(y3) / DC
f(osc) = 6 rad/sec

oS = 1.5879 5
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Example 4: The step response of G(s)
1s shown to the right. Find G(s);

Solution:
« Second Order (oscillates)

« DC gain =10.2
_ [ 3cycles
Wq = (3.1 sec)zn
« Ty=35sec = %

- OS = (%) = 0.627

Pick 3 to find G(s)

B 386
G(s) = ((s+0.8+j6.1)(s+0.8—j6.1))
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Second Order Approximations
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