LaGrangian Formulation of
System Dynamics

NDSU ECE 463/663
Lecture #6
Inst: Jake Glower

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions




Finding the dynamics of a nonlinear system:

Circuit analysis tools work for simple lumped systems.
« RC Circuits
« RLC Circuits

For more complex systems, especially nonlinear ones, this approach fails.

The Lagrangian formulation for system dynamics is a way to deal with any
system.

- It defines the energy in the system

- It then determines how the energy moves about the system

 The result is a tool that can be used to find the dynamics of linear and nonlienar
systems




Definitions:
KE Kinetic Energy in the system

PE Potential Energy
J
ot
d
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The partial derivative with respect to 't'.

The full derivative with respect to t.
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L. Lagrangian = KE - PE




Partial vs. Full Derivatives

A full derivative includes partial derivatives
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When taking a parial derivative everything else is treated like a constant
J
H (Y1) = (PyH)(4r)

It doesn't matter that x and y are functions of t. That is taken into account in
other terms in the full derivative

- If you took this into acount when taking the partial with respect to t, you'd double
count these terms




Example: Let

x() = 2t y(t) = cos(3?) f=sin(2x) - y? - £
Find

dt <(sin(2x) - y? - 1%)
Solution

df

: 0 J, - dy 9, - 0
2 = 2(sin(2x) - y* - )L + 5,(sin(2x) - y* - )= + S(sin(2x) - y? - 135

d—’; = (2 cos(2x) - y? - t3) X+ (t3sin(2x) : 2y> v+ (sin(Zx) y?. 3t2>

Often times, people forget the and - terms. You need them.




Procedure for LaGrangian Dynamics:
1) Define the kinetic and potential energy in the system.
2) Form the Lagrangian:
L =KE-PE
3) The input is then
Fi=ali) -5
where F. is the input to state x.. Note that

- If x. 1s a position, F. is a force.
- If x; 1s an angle, F. is a torque

Also pay attention to the full derivatives and the partial derivatives.




Example: Rocket Dynamics
Step 1: Determine the potential and kinetic energy
Potential Energy
PE = mgx
Kinetic Energy:
KE = 2mx?

Step 2: Set up the LaGrangian
L =KE—-PE
_ 12
L =-mx® —mgx




Step 3: Take the partials
L =2mx* - mgx

F= :t(si) -(2)

F ——(mX) (—mg)

Take the full derivative with respect to t

F = mX+mx+mg

Note that if the rocket is loosing mass you get the term mx. If you leave this
term out, the rocket misses the target.




Example 2: Ball in a parabolic bowl

Determine the dynamics of a ball rolling in a bowl characterized by
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Step 1: Define the kinetic and potential energy
Potential Energy:

PE = mgy = -mgx?

q
Kinetic Energy: This has two terms, one for /\'
translation and one for rotation . @
KE = 2mv? + 262 \
d
The velocity is

v= X2 +V?

The rotational velocity i1s
d=ro
v=rb




Note that
y =%
v = XX
gives

2
KE =2mv? +2J(F)
1

KE =3\ m+3)v2
KE=3\m+3 (5(2+§/2)
KE=3\m+= (5(2+(X5<)2)




The inertia depends upon what type of ball you are using:

J=0 point mass with all the mass in the center
_ 2.2 ~

J=<mr= solid sphere

J = %mr2 hollow sphere

2

J=mr hollow cyllinder

Assume the ball is a solid sphere
1 %mr : ( ) . 2)
KE=E m+=— | X + (XX)

KE=0.7m(12 4+ x2 ) %2




Step 2: Form the LaGrangian
L =KE—-PE

L= O.7m(1 2 +x2> x? — %mgx2

Step 3: Take derivatives (parial and full)
F=al2)-(3)
F=9(1.4m(1+x2)%) - (1.4mxi? - mgx)
F=1.4m(2xx)Xx + 1 .4m<1 + xz) X — (1 Amxx? — mgx)

F=1.4mxx? +1.4m( 1 +x? ) X + mgx




Assumingm=1,F=0

(1 .45<2+g)x
1.4(1 2+x2)

Matlab Code (Ball.m)

while(t < 100)
ddx = —( 1.4*dx*dx + 9.8) * x / ( 1.4*(1 + x*x) );

% 1ntegrate

X = xX + dx*dt;
dx = dx + ddx*dt;

% display the ball




Animation Trick
Drawing a line through the ball to show it rotating helps the animation

To draw this line, you need to know how far the ball has rolled:
[=r0

J(@02+(dy)? =r-db

J1+(ﬂ)2dx:r-de |

ax

o=t {[1+(2)" Jax :
Since y = 1x2

9=l,j(\/1+X2)dX i

0.5 1 1.5




What 1s the frequency of oscillation for x small?

If x 1s small,

X2X =

|

0

x2 =0

(1 .45<2+g)x

e
1 .4(1 2+x2) 1.4

(52+%)x=0

s=4j /-5 = j2.646

Pﬂmd=(

2T
2.646

) =2.375 sec
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Sidelight: Is the frequency of oscillation constant?

For a constant frequency of oscilllation, you need

X = constant
Here, you have S y
- (1 .45<2+g)x N
X=-
1.4(1 2+x2)

No, it isn't constant. (1.e. this would make a bad clock)




What shape results in a constant frequency of oscillation?

Answer: A catenoid

y=a cosh (%)
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History of Clocks

Clocks are important for navigation
 They tell you your east / west longidude
- Old maps were accurate north / south, East / West were sketchy




A ship's chronometer (clock) was one of
the most important instruments on the
entire ship

« It told you your location east / west

- It was kept under lock and key in the
Captain's quarters

 Only the Captain could touch it
« This was cutting edge technology in 1700




Railroads and Clocks

When Europe was connected with rail
lines, it became important to have a
univesal time

 Previously, each city kept its own time

This led to Europe adopting a
common time

Railroad time clocks were the most
accurate in the world

 Only one train can be on a track at any
one time




Time Today: NIST

« One second is the duration of 9,192,631,770 cycles of the radiation associated

with a specified transition of the cesium atom.
® https://www.nist.gov/system/files/documents/calibrations/sp432-02.pdf
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