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Finding the dynamics of a nonlinear system:

Circuit analysis tools work for simple lumped systems.

RC Circuits

RLC Circuits

For more complex systems, especially nonlinear ones, this approach fails.

The Lagrangian formulation for system dynamics is a way to deal with any

system.

It defines the energy in the system 

It then determines how the energy moves about the system

The result is a tool that can be used to find the dynamics of linear and nonlienar

systems



Definitions:

KE Kinetic Energy in the system

PE Potential Energy

The partial derivative with respect to 't'.
∂

∂t

The full derivative with respect to t.
d

dt
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L Lagrangian = KE - PE



Partial vs. Full Derivatives

A full derivative includes partial derivatives
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When taking a parial derivative everything else is treated like a constant
∂

∂t(x
2y3t4) = (x2y3)(4t3)

It doesn't matter that x and y are functions of t.  That is taken into account in

other terms in the full derivative

If you took this into acount when taking the partial with respect to t, you'd double

count these terms



Example:  Let

x(t) = 2t2 y(t) = cos(3t) f = sin(2x) ⋅ y2 ⋅ t3

Find
df

dt
= d

dt(sin(2x) ⋅ y2 ⋅ t3)

Solution
df

dt
= ∂

∂x(sin(2x) ⋅ y2 ⋅ t3)
∂x

∂t
+ ∂

∂y(sin(2x) ⋅ y2 ⋅ t3)
∂y

∂t
+ ∂

∂t(sin(2x) ⋅ y2 ⋅ t3)
∂t

∂t

df

dt
= 
2cos(2x) ⋅ y2 ⋅ t3  x

.
+ t

3
sin(2x) ⋅ 2y y

.
+ sin(2x) ⋅ y2 ⋅ 3t2 

Often times, people forget the  and  terms.  You need them.dx

dt

dy

dt



Procedure for LaGrangian Dynamics:  

1)  Define the kinetic and potential energy in the system.

2)  Form the Lagrangian:

L = KE − PE

3)  The input is then

Fi =
d

dt



∂L

∂x
.
i


 −

∂L

∂xi

where Fi is the input to state xi.  Note that 

If xi is a position, Fi is a force.

If xi is an angle, Fi is a torque

Also pay attention to the full derivatives and the partial derivatives.



Example:  Rocket Dynamics

Step 1: Determine the potential and kinetic energy

Potential Energy

PE = mgx

Kinetic Energy:

KE =
1

2
mx
.
2

Step 2: Set up the LaGrangian

L = KE − PE

L =
1

2
mx
.
2 − mgx

x

F



Step 3: Take the partials

L =
1

2
mx
.
2 − mgx

F =
d

dt



∂L

∂x
.

 − 

∂L

∂x



F =
d

dt
(mx

.
) − (−mg)

Take the full derivative with respect to t

F = mẍ + m
.
x
.

+mg

Note that if the rocket is loosing mass  you get the term  . If you leave thism
.
x
.

term out, the rocket misses the target.



Example 2: Ball in a parabolic bowl

Determine the dynamics of a ball rolling in a bowl characterized by

y =
1

2
x2



Step 1: Define the kinetic and potential energy

Potential Energy:

PE = mgy =
1

2
mgx2

Kinetic Energy: This has two terms, one for

translation and one for rotation . 

KE =
1

2
mv2 +

1

2
Jθ
.
2

The velocity is

v = x
.
2 + y

.
2

The rotational velocity is

d = rθ

v = rθ
.

q

r

d



Note that

y =
1

2
x2

y
.

= xx
.

gives
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1

2
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2
J(

v
r)

2

KE =
1

2


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J
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
 v

2
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
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J
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


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.
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.
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
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

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.
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.
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y



The inertia depends upon what type of ball you are using:

point mass with all the mass in the centerJ = 0

solid sphereJ =
2

5
mr2

hollow sphereJ =
2

3
mr2

hollow cyllinderJ = mr2

Assume the ball is a solid sphere

KE =
1

2



m +

2

5
mr2

r2




x
.
2 + (xx

.
)2 

KE = 0.7m
1

2 + x2 
 x
.
2



Step 2: Form the LaGrangian

L = KE − PE

L = 0.7m
1

2 + x2 
 x
.
2 −

1

2
mgx2

Step 3:  Take derivatives (parial and full)

F =
d

dt



∂L

∂x
.

 − 

∂L

∂x



F =
d

dt

1.4m


1 + x2 

 x
. 
 − 1.4mxx

.
2 − mgx

F = 1.4m(2xx
.
)x
.

+ 1.4m
1 + x2 

 ẍ − 1.4mxx
.
2 −mgx

F = 1.4mxx
.
2 + 1.4m

1 + x2 
 ẍ + mgx



Assuming m = 1, F = 0

ẍ = −





1.4x

.
2+g x

1.4

1

2+x2 






Matlab Code  (Ball.m)

while(t < 100)

    

ddx = -( 1.4*dx*dx + 9.8) * x / ( 1.4*(1 + x*x) );

 

% integrate

 

x = x + dx*dt;

dx = dx + ddx*dt;

 

% display the ball

:

:

y

x



Animation Trick

Drawing a line through the ball to show it rotating helps the animation

To draw this line, you need to know how far the ball has rolled:

l = rθ

(dx)2 + (dy)
2

= r ⋅ dθ

1 + 
dy

dx



2

dx = r ⋅ dθ

θ = 1
r ∫




 1 + 

dy

dx



2 


 dx

Since y = 1
2
x2

θ = 1
r ∫  1 + x2 

 dx



What is the frequency of oscillation for x small?

If x is small,

x
.
2x ≈ 0 x2 ≈ 0

ẍ = −





1.4x

.
2+g x

1.4

1

2+x2 




 ≈ −

g

1.4


 x


s

2 +
g

1.4


 x = 0

s = ±j
g

1.4
= j2.646

Period =  sec


2π

2.646

 = 2.375
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Sidelight:  Is the frequency of oscillation constant?

For a constant frequency of oscilllation, you need

ẍ = constant

Here, you have

ẍ = −





1.4x

.
2+g x

1.4

1

2+x2 






No, it isn't constant.  (i.e. this would make a bad clock)

y

x



What shape results in a constant frequency of oscillation?

Answer: A catenoid

y = a cosh


x−b
c


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History of Clocks

Clocks are important for navigation

They tell you your east / west longidude

Old maps were accurate north / south, East / West were sketchy



A ship's chronometer (clock) was one of

the most important instruments on the

entire ship

It told you your location east / west

It was kept under lock and key in the

Captain's quarters

Only the Captain could touch it

This was cutting edge technology in 1700



Railroads and Clocks

When Europe was connected with rail

lines, it became important to have a

univesal time

Previously, each city kept its own time

This led to Europe adopting a

common time

Railroad time clocks were the most

accurate in the world

Only one train can be on a track at any

one time



Time Today:  NIST

One second is the duration of 9,192,631,770 cycles of the radiation associated

with a specified transition of the cesium atom.
https://www.nist.gov/system/files/documents/calibrations/sp432-02.pdf


