Servo-Compensators
AC Set Points

NDSU ECE 463/663
Lecture #17
Inst: Jake Glower

Please visit Bison Academy for corresponding
lecture notes, homework sets, and solutions




Recap:

If you want to track a constant set point

« Add a servo compensator with a pole at s =0
« Add full state feedback

The resulting system can

 Track a constant set point, and

« Reject constant disturbances
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Problem: Sinusoidal Set Points

What if you want to track a sinusoidal set point?

 The previous design only works at s =0
« Change the frequency of R, it no longer tracks
« Change the frequency of d, it no longer rejects the disturbance
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Solution: Sinusoidal Set Points
At DC, the servo compensator has a gain of infinity

« This forces the error to zero at s =0
At o rad/sec, the gain 1s finite

« This creates finite error at this frequency

Change the servo compensator so that it has infinite gain at @ rad/sec

- Choose Az so that it has poles at 1j®
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Example: Let the plant be
sX=AX+BU
Y=CX

Define a servo-compensator
sZ=A,Z+B.(Y—R)

so that the eigenvalue of Az are
eig(A;) =1jo

Feed the servo-compensator with the difference between Y and the set point R
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In state-space, the plant plus servo-compensator looks like the following:
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Example: 4th-Order RC Filter
Let
R(t) = sin(2¢)
Design a feedback control law for the following system so that

« The 2% settling time 1s 4 seconds,
- Y—>R
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Solution: First, design a servo compensator with poles at s = 152

 There are multiple solutions
 One that works 1is:
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Use pole placement to meet the
requirements

« Dominant pole at s = -1
« Other poles anywhere left of -1

Place the poles at
- s={-1,-2,-3,-4,-5, -6}
« Somewhat arbitrary

« The pole at -1 1sn't that dominant...
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In Matlab:

A=[-2,1,0,0 ; 1,-2,1,0 ; O,1,-2,1 ; 0,0,1,-1];
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B = [1;0;0;0];
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cC =100,0,0,171;




Add in the servo-compensator (any system with poles at 152 )

Az = [0,2;_210]

0. 2.
- 2. 0.

Bz = [1;1]




Augment the plant plus servo compensator

A6 = [A,zeros(4,2);Bz*C,Az]
- 2. 1. 0. 0. 0 0
1. - 2. 1. 0. 0 0
0. 1. - 2. 1. 0 0
0. 0. 1. - 1. 0 0
0 0 0 1. 0 2
0 0 0 1. -2 0
Bo = [B;0;0]
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Use Bass Gura, find the transformation matrix to take you to controller
canonical form:

K6 = ppl (A6, B6, [-1,-2,-3,-4,-5,-6])

Check that the closed-loop poles of (A - BK) are where they should be:

>> eig (A6 — B6*K6)

-6.0000
-5.0000
-4.0000
-3.0000
-2.0000
-1.0000




Validation: step3.m

This gets a bit tricky. Matlab has the built in function impulse() which assumes
U =9()

Matlab has the build in function step() which assumes
U = u(?)

Matlab does not have a built in function which assumes

U = cos (21) u(r)

So, create a function:

y = step3(A, B, C, D, t, X0, U);

- {A, B, C, D} define the system's dynamics,
« t defines the time points
« X0 is the initial condition (currently not needed but we'll need that later....), and

« U 1s the input at time points defined 1n t.




In order to comput y(t), it's easiest to convert to discrete time. In discrete-time
(z-domain), the dynamics are:

X=A.X+B,U
Y=C,X+D,U

This 1s much easier to simulate in Matlab since you avoid numerical integration
and all the errors that can produce. X(k) at all times are found from

X = XO0;
for k=1l:1length (t)
Az*X + Bz*U

X
Y Cz*X + Dz*U
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To make this work, you need to convert from continuous time (s-plane) to
discrete-time (z-plane).




In the s-plane, the dynamics are:
sX=AX+BU
Y=CX+DU

In the z-plane:
X=A,X+B,U
Y=C,X+D,U

The relationship for each term is:

A, =elT matlab funciton expm(A*T)
B, ~ BT
C,=C
D,=D

where T is the time step used in the time vector, t.

« This function requires constant step size in t.




Finally, to allow for sinusoidal inputs, assume

« t1s a column vector defining time at each point
U 1s a column vector defining the input at each time point.

For example, if you want to find the step response

t
U

[0:0.01:101";
0O*t + 1;

If you want to find the response to a 5 rad/sec sinusoidal input

t
U

[0:0.01:1071";
sin(5*t) ;




With that, the function step3 is:

function [ y ] = step3( A, B, C,
T = t(2) - t(l);
[m, n] = size(C);

Az = expm (A*T);

Bz = B*T;

X = X0;

y = zeros(npt, m);

y(l,:) = (C*X + D * (U(Ll,:)" )

for i=2:npt

X = Az*X + Bz*( U(i,:)" );
Y = C*X + D * ( U(i,:)" );
Y(i/-) = Y'/

end




Validation:

Now that we have a fuction that can apply a sinusoidal input to a system, lets
validate the previous servo compensator.

A=[-2,1,0,0 ; 1,-2,1,0 ,; O,1,-2,1 ; 0,0,1,-1];
B = [1;0;0;0];
cC = 10,0,0,171;

%$Servo Compensator
Az = [0,2;-2,07;
Bz = [1;1];

% Augmented System
A6 = [A,zeros(4,2);Bz*C,Az];
Bou = [B; 0*Bz];

Bor [0*B, -Bz];

cCe = [C,0,0]

Do = 0;

K6 = ppl(A6, B6ul [_11_21_31_41_51_6]);

t = [0:0.05:1071";
X0 = zeros(6,1);
R = sin(2*t);




Case 1: Step Response with Respect to the Set-Point: R

[0:0.05:1071";

sin(2*t);

step3 (A6-B6u*K6, B6r, C6, D6, t, X0, R);
lOt(tIYI 'b'rtrRr 'r');
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Case 2: Step Response with Respect to a 2 rad/sec disturbance

d = sin(2*t);
y = step3 (A6-B6u*K6, B6u, C6, D6, t, X0, d);
plot (t,y*500,'b',t,R,'r");
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Case 3: R =sin(2t), d = cos(2t)
« Create two inputs so you can adjust as you like...

R sin(2*t);

d cos (2*t) ;

y = step3 (A6-B6u*K6, [Bér, B6u], C6, [0, 0], t, X0, [R, d]);
plOt(tIYI 'b'ItIRI 'r'ItIdI 'g');
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Ball & Beam Simulation

« Track a 2 rad/sec sinusoid

- Poles placed at {-1, -2, -3, -4, -5, -6} 07|

X = zeros(4,1); i R
Z = zeros(2,1); 0.5

dt = 0.01;

t = 0; i

Kx = [ -170.95 205.21 -111.60 25.20]; 0.25

Kz = [ 202.2938 -58.2880]; |

y = [1;

while(t < 10)
Ref = 0.5*sin(2*t);
U = -Kz*Z - Kx*X;

dX = BeamDynamics (X, U); 025-
dZ = Az*Z + Bz* (X(1l) - Ref);
X = X + dX * dt; 05
Z = Z + dzZ*dt;
Y [y ; Ref, X(1)1;
t =t + dt; - ball position
BeamDisplay (X, Ref); 0751
end
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Cart & Pendulum Simulation

« Servo compensator with poles at {j2, -j2}
« Closed-loop poles = {-1, -2, -3, -4, -5, -6}
 Tracks a 2 rad/sec set point

X = zeros(4,1);

Z = zeros(2,1);

dX = zeros(4,1);

Ref = 1;

dt = 0.01;

t = 0;

Kx = [ -146.87 -518.27 -120.43 -162.43];
Kz = [ 171.0145 -49.2754];

Az = [0,2;-2,0];

Bz = [1;1];

while (t < 10)
Ref = 1.0*sin(2*t);
U = — Kx*X - Kz*Z;
dX = CartDynamics (X, U);
dZ = Az*Z + Bz* (X(1l) - Ref);
X = X + dxX * dt;

Z =2 + dZz*dt;

t =t + dt;

CartDisplay (X, Ref);
end
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Summary

Not surprisingly, adding a servo compensator with poles at {+j2, -j2} creates a
system which can

« Track 2 rad/sec set points, and
« Rejet 2 rad/sec disturbances

separately or both at the same time.
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