
Servo-Compensators

AC Set Points
NDSU ECE 463/663

Lecture #17

Inst: Jake Glower

 Please visit Bison Academy for corresponding 

lecture notes, homework sets, and solutions



Recap:  

If you want to track a constant set point

Add a servo compensator with a pole at s = 0

Add full state feedback

The resulting system can

Track a constant set point, and

Reject constant disturbances

1/sB

A

C
XsX Y

Plant

-Kx

1/s

R
d

Servo Compensator

Z

-Kz

U

Control Law



Problem:  Sinusoidal Set Points

What if you want to track a sinusoidal set point?

The previous design only works at s = 0

Change the frequency of R, it no longer tracks

Change the frequency of d, it no longer rejects the disturbance

Plant

Y

X

Kx

U

R

ZsZ

Kz

dist



Solution:  Sinusoidal Set Points

At DC, the servo compensator has a gain of infinity

This forces the error to zero at s = 0

At  rad/sec, the gain is finiteω

This creates finite error at this frequency

Change the servo compensator so that it has infinite gain at  rad/secω

Choose Az so that it has poles at ±jω

ZsZ

Az

B

A

C
XsXU

Bz

d(t) R

Kx

Kz

control law

Servo-Compensator

Plant

Y



Example:  Let the plant be

sX = AX + BU

Y = CX

Define a servo-compensator

sZ = AzZ + Bz(Y − R)

so that the eigenvalue of Az are

eig(Az) = ±jω

Feed the servo-compensator with the difference between Y and the set point R

ZsZ

Az

B

A

C
XsXU

Bz

d(t) R

Kx

Kz

control law

Servo-Compensator

Plant

Y



In state-space, the plant plus servo-compensator looks like the following:

s





X

Z




 =






A 0

BzC Az










X

Z




 +






B

0




U +






0

−Bz




R

U = − Kx Kz 





X

Z






or 

s





X

Z




 =






A − BKx −BKz

BzC Az










X

Z




 +






0

−Bz




R

Plant

YXsXU
B

A

C

Kx

Kz

Bz

Az

sZ Z

R



Example:  4th-Order RC Filter

Let

R(t) = sin(2t)

Design a feedback control law for the following system so that

The 2% settling time is 4 seconds,

Y → R

+

-
U

X1 X2 X3 X4 = Y
1 1 1 1

1F 1F 1F 1F



Solution:  First, design a servo compensator with poles at s = ±j2

There are multiple solutions

One that works is:

sZ =





0 2

−2 0




Z +






1

1




Uz

Create an augmented system:  plant plus servo

s





X

Z




 =






A 0

BzC Az










X

Z




 +






B

0




U +






0

−Bz




R

s










X
. ..

Z









=






















−2 1 0 0
.
.. 0 0

1 −2 1 0
.
.. 0 0

0 1 −2 1
.
.. 0 0

0 0 1 −1
.
.. 0 0

. .. . .. . .. . .. . .. . ..

0 0 0 1
.
.. 0 2

0 0 0 1
.
.. −2 0































X
. ..

Z









+






















1

0

0

0
. ..

0

0





















U +






















0

0

0

0
. ..

−1

−1





















R



Use pole placement to meet the

requirements

Dominant pole at s = -1

Other poles anywhere left of -1

Place the poles at

s = {-1, -2, -3, -4, -5, -6}

Somewhat arbitrary

The pole at -1 isn't that dominant...

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
-8

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

Time (seconds)

Dominant Pole



In Matlab:

A = [-2,1,0,0 ; 1,-2,1,0 ; 0,1,-2,1 ; 0,0,1,-1];

 

  - 2.    1.    0.    0.  

    1.  - 2.    1.    0.  

    0.    1.  - 2.    1.  

    0.    0.    1.  - 1.  

 

B = [1;0;0;0];

    1.  

    0.  

    0.  

    0.  

C = [0,0,0,1];

    0.    0.    0.    1.  



Add in the servo-compensator (any system with poles at  )±j2

Az = [0,2;-2,0]

 

    0.    2.  

  - 2.    0.  

 

Bz = [1;1]

    1.  

    1.  



Augment the plant plus servo compensator 
 

A6 = [A,zeros(4,2);Bz*C,Az]

 

  - 2.    1.    0.    0.  :  0.    0.  

    1.  - 2.    1.    0.  :  0.    0.  

    0.    1.  - 2.    1.  :  0.    0.  

    0.    0.    1.  - 1.  :  0.    0.  

    - - - - - - - - - - - - - - - - -

    0.    0.    0.    1.  :  0.    2.  

    0.    0.    0.    1.  : -2.    0.  

 

B6 = [B;0;0]

 

    1.  

    0.  

    0.  

    0.  

    0.  

    0.  



Use Bass Gura, find the transformation matrix to take you to controller

canonical form:

K6 = ppl(A6, B6, [-1,-2,-3,-4,-5,-6])

 

    14.    86.    299.    540.  - 1180.    340.  

   |--------- Kx -------------||--- Kz --------|

Check that the closed-loop poles of (A - BK) are where they should be:

>> eig(A6 - B6*K6)

   -6.0000

   -5.0000

   -4.0000

   -3.0000

   -2.0000

   -1.0000



Validation: step3.m

This gets a bit tricky.  Matlab has the built in function impulse() which assumes

U = δ(t)

Matlab has the build in function step() which assumes

U = u(t)

Matlab does not have a built in function which assumes

U = cos (2t) u(t)

So, create a function:

y = step3(A, B, C, D, t, X0, U);

{A, B, C, D} define the system's dynamics,

t defines the time points

X0 is the initial condition (currently not needed but we'll need that later....), and

U is the input at time points defined in t.



In order to comput y(t), it's easiest to convert to discrete time.  In discrete-time

(z-domain), the dynamics are:

zX = AzX + BzU

Y = CzX + DzU

This is much easier to simulate in Matlab since you avoid numerical integration

and all the errors that can produce.  X(k) at all times are found from

X = X0;

for k=1:length(t)

   X = Az*X + Bz*U

   Y = Cz*X + Dz*U

   end

To make this work, you need to convert from continuous time (s-plane) to

discrete-time (z-plane).



In the s-plane, the dynamics are:

sX = AX + BU

Y = CX + DU

In the z-plane:

zX = AzX + BzU

Y = CzX + DzU

The relationship for each term is:

matlab funciton expm(A*T)Az = eAT

Bz ≈ BT

Cz = C

Dz = D

where T is the time step used in the time vector, t.

This function requires constant step size in t.



Finally, to allow for sinusoidal inputs, assume

t is a column vector defining time at each point

U is a column vector defining the input at each time point.

For example, if you want to find the step response

t = [0:0.01:10]';

U = 0*t + 1;

If you want to find the response to a 5 rad/sec sinusoidal input

t = [0:0.01:10]';

U = sin(5*t);



With that, the function step3 is:

function [ y ] = step3( A, B, C, D, t, X0, U )

T = t(2) - t(1);

[m, n] = size(C);

npt = length(t);

Az = expm(A*T);

Bz = B*T;

X = X0;

y = zeros(npt, m);

y(1,:) = (C*X + D * ( U(1,:)' ) )';

for i=2:npt

    X = Az*X + Bz*( U(i,:)' );

    Y = C*X + D * ( U(i,:)' );

    

    y(i,:) = Y';

    

   end

end



Validation:

Now that we have a fuction that can apply a sinusoidal input to a system, lets

validate the previous servo compensator.

% Plant

A = [-2,1,0,0 ; 1,-2,1,0 ; 0,1,-2,1 ; 0,0,1,-1];

B = [1;0;0;0];

C = [0,0,0,1];

%Servo Compensator

Az = [0,2;-2,0];

Bz = [1;1];

% Augmented System

A6 = [A,zeros(4,2);Bz*C,Az];

B6u = [B; 0*Bz];

B6r = [0*B, -Bz];

C6 = [C,0,0]

D6 = 0;

K6 = ppl(A6, B6u, [-1,-2,-3,-4,-5,-6]);

t = [0:0.05:10]';

X0 = zeros(6,1);

R = sin(2*t);



Case 1:  Step Response with Respect to the Set-Point: R

t = [0:0.05:10]';

R = sin(2*t);

y = step3(A6-B6u*K6, B6r, C6, D6, t, X0, R);

plot(t,y,'b',t,R,'r');

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

Time (seconds)

Output (blue) and Set-Point (red)



Case 2:  Step Response with Respect to a 2 rad/sec disturbance

d = sin(2*t);

y = step3(A6-B6u*K6, B6u, C6, D6, t, X0, d);

plot(t,y*500,'b',t,R,'r');

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

Time (seconds)

500y(t) d(t)



Case 3:  R = sin(2t), d = cos(2t)

Create two inputs so you can adjust as you like...

R = sin(2*t);

d = cos(2*t);

y = step3(A6-B6u*K6, [B6r, B6u], C6, [0, 0], t, X0, [R, d]);

plot(t,y,'b',t,R,'r',t,d,'g');

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

Time (seconds)

y(t)d(t)R(t)



Ball & Beam Simulation

Track a 2 rad/sec sinusoid

Poles placed at {-1, -2, -3, -4, -5, -6}

X = zeros(4,1);

Z = zeros(2,1);

dt = 0.01;

t = 0;

Kx = [ -170.95  205.21 -111.60  25.20];

Kz = [  202.2938  -58.2880];

y = [];

 

while(t < 10)

 Ref = 0.5*sin(2*t);

 U = -Kz*Z - Kx*X;

 dX = BeamDynamics(X, U);

 dZ = Az*Z + Bz*(X(1) - Ref);

 X = X + dX * dt;

 Z = Z + dZ*dt;

 y = [y ; Ref, X(1)];

 t = t + dt;

 BeamDisplay(X, Ref);

 end

0 2 4 6 8 10
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Time (seconds)

ball position

R



Cart & Pendulum Simulation

Servo compensator with poles at {j2, -j2}

Closed-loop poles = {-1, -2, -3, -4, -5, -6}

Tracks a 2 rad/sec set point
X = zeros(4,1);

Z = zeros(2,1);

dX = zeros(4,1);

Ref = 1;

dt = 0.01;

t = 0;

Kx = [ -146.87 -518.27 -120.43 -162.43];

Kz = [  171.0145  -49.2754];

Az = [0,2;-2,0];

Bz = [1;1];

while(t < 10)

  Ref = 1.0*sin(2*t);

  U = - Kx*X - Kz*Z;

  dX = CartDynamics(X, U);

  dZ = Az*Z + Bz*(X(1) - Ref);

  X = X + dX * dt;

  Z = Z  + dZ*dt;

  t = t + dt;

  CartDisplay(X, Ref);

end 0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

Time (seconds)

Cart PositionR





Summary

Not surprisingly, adding a servo compensator with poles at {+j2, -j2} creates a

system which can

Track 2 rad/sec set points, and

Rejet 2 rad/sec disturbances

separately or both at the same time.

Plant

YXsXU
B

A

C

Kx

Kz

Bz

Az

sZ Z

R


