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Pole-Placement Flashback:

Kx = ppl(A, B, Poles);

Places the poles anywhere

Where should the poles be placed?

What gains are best?

Linear Quadratic Gaussian Control (LQG):

Define a cost function

Find Kx to minimize that cost function

LQG is just another way to find Kx:

Kx = lqr(A, B, Q, R);



LQG Control Solution:

Assume you have a linear system with an arbitrary initial condition

sX = AX + BU

Y = CX

Find Kx to minimize

J = ∫0

∞
(XTQX + UTRU)dt

U = −KxX

The solution is

Kx = R−1BTP

where P is the solution to the Ricatti equation

0 = −ATP − PA − Q + PBR−1BTP



Comments:

Essentially, the cost function is the matrix form of 

J = ∫0

∞ 
Σ qix i

2 + Σ r iui
2 


This cost function has a solution (a big plus)

The resulting gains are constants (another big plus)

You could use other cost functions
- but that would make the solution much  harder to obtain.

This is termed optimal control

It's optimal for an arbitary cost function.

Any stabilizing control law is optimal for some Q and R

That sort of makes the word optimal meaningless.

LQR is a tool similar to pole placement to find feedback gains.



Example:  Heat Equation

Find the optimal feedback gains for the heat eqation with

J = ∫0

∞
(y2 + u2)dt

J = ∫0

∞
(104y2 + u2)dt

J = ∫0

∞
(y2 + 104u2)dt

Matlab Solution: First, input the system (A, B)
 A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1]
 
  - 2.    1.    0.    0.  
    1.  - 2.    1.    0.  
    0.    1.  - 2.    1.  
    0.    0.    1.  - 1.  

 



B = [1;0;0;0]
 
    1.  
    0.  
    0.  
    0.  

Define the weighting matrices (Q, R)

C = [0,0,0,1]
 
    0.    0.    0.    1.  
 
Q = C'*C

    0.    0.    0.    0.  
    0.    0.    0.    0.  
    0.    0.    0.    0.  
    0.    0.    0.    1.  
 
R = 1;



Solve the Ricatti equation to find the full-state feedback gains:

Kx = lqr(A, B, Q, R)
 
    0.0426938    0.0862990    0.1279791    0.1572416 

The "optimal" location of the closed-loop poles are:

eig(A-B*Kx)
 
  -3.5322276  
  -2.3461035  
  -1.0089118  
  -0.0700632  



Repeating for weights of {104, 102, 1, 10-2, 10-4} for Q:
Q "Optimal" Feedback Gain:  Kx

10-4

0.0000053    0.0000105    0.0000154    0.0000188

10-2

0.0005257    0.0010516    0.0015389    0.0018713

1 0.0426938    0.0862990    0.1279791    0.1572416

102 0.6842631    1.6026342    2.8230412    3.9399371

104 3.128746    11.152018    29.584146    55.140089

The corresponding location of the closed-loop poles are:
Q "Optimal" Location of Closed-Loop Poles

10-4

-3.53,  -2.34,  -0.99,  -0.12

10-2

-3.53,  -2.34,  -0.99,  -0.12

1 -3.53   -2.34,  -0.99,  -0.17

102 -3.51,  -2.45,  -0.85 + j0.65

104 -3.64 + j0.81,  -1.41 + j2.27



Location of "Optimal" Closed Loop Poles for R=1, 10-4 < Q < 10+4



Kx = lqr(A, B, Q, R);
DC = -C*inv(A-B*Kx)*B;
Kr = 1/DC;
G = ss(A-B*Kx,B*Kr,C,0);
y = step(G,t);
plot(t,y);
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Tuning the Step Response:

Adjust Q and R to tune the response:

Faster System:  Increase the weight on y = CX

Q =CTC

Slow Down or Less Oscillation:  Weight y' = (CA)X

Q = (CA)TCA

 Q = αCTC + β(CA)TCA



Example:  Design a feedback controller so that the 4th-order heat equation has

No overshoot for a step input, and

A 2% settling time of 4 seconds
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Step response for Q = 104 CTC  (blue) as well as the desired response



Adjust the weightings on y and y'

Q = 104 ⋅ CTC + 3 ⋅ 104(CA)TCA
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