Linear Quadratic Gaussian (LQG) Control NDSU ECE 463/663

Lecture #25 Inst: Jake Glower

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Pole-Placement Flashback:

- Kx = ppl(A, B, Poles);
- Places the poles *anywhere*

Where *should* the poles be placed? What gains are best?

Linear Quadratic Gaussian Control (LQG):

- Define a cost function
- Find Kx to minimize that cost function

LQG is just another way to find Kx:

• Kx = lqr(A, B, Q, R);

LQG Control Solution:

Assume you have a linear system with an arbitrary initial condition

sX = AX + BUY = CX

Find Kx to minimize

$$J = \int_0^\infty (X^T Q X + U^T R U) dt$$
$$U = -K_x X$$

The solution is

$$K_x = R^{-1}B^T P$$

where P is the solution to the Ricatti equation

 $0 = -A^T P - PA - Q + PBR^{-1}B^T P$

Comments:

- Essentially, the cost function is the matrix form of $J = \int_0^\infty \left(\sum q_i x_i^2 + \sum r_i u_i^2 \right)$
- This cost function has a solution (a big plus)
- The resulting gains are constants (another big plus)
- You could use other cost functions
 - but that would make the solution *much* harder to obtain.

This is termed optimal control

- It's optimal for an arbitary cost function.
- Any stabilizing control law is optimal for some Q and R
- That sort of makes the word *optimal* meaningless.

LQR is a tool similar to pole placement to find feedback gains.

Example: Heat Equation

Find the optimal feedback gains for the heat equation with

$$J = \int_{0}^{\infty} (y^{2} + u^{2})dt$$
$$J = \int_{0}^{\infty} (10^{4}y^{2} + u^{2})dt$$
$$J = \int_{0}^{\infty} (y^{2} + 10^{4}u^{2})dt$$

Matlab Solution: First, input the system (A, B) A = [-2, 1, 0, 0; 1, -2, 1, 0; 0, 1, -2, 1; 0, 0, 1, -1]

B = [1;0;0;0] 1. 0.

0.

Define the weighting matrices (Q, R)

C = [0, 0, 0, 1] 0. 0. 0. 0. 1. Q = C'*C 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.R = 1; Solve the Ricatti equation to find the full-state feedback gains:

The "optimal" location of the closed-loop poles are:

eig(A-B*Kx)

-3.5322276 -2.3461035 -1.0089118 -0.0700632

Q	"Optimal" Feedback Gain: Kx				
10-4	0.000053	0.0000105	0.0000154	0.0000188	
10-2	0.0005257	0.0010516	0.0015389	0.0018713	
1	0.0426938	0.0862990	0.1279791	0.1572416	
10 ²	0.6842631	1.6026342	2.8230412	3.9399371	
104	3.128746	11.152018	29.584146	55.140089	

Repeating for weights of $\{10^4, 10^2, 1, 10^2, 10^4\}$ for Q:

The corresponding location of the closed-loop poles are:

Q	"Optimal" Location of Closed-Loop Poles				
10-4	-3.53, -2.34,	-0.99,	-0.12		
10-2	-3.53, -2.34,	-0.99,	-0.12		
1	-3.53 -2.34,	-0.99,	-0.17		
10 ²	-3.51, -2.45,	-0.85 +	j0.65		
104	-3.64 + j0.81,	-1.41 +	j2.27		

Location of "Optimal" Closed Loop Poles for R=1, $10^{-4} < Q < 10^{+4}$

Tuning the Step Response:

Adjust Q and R to tune the response:

Faster System: Increase the weight on y = CX

 $Q = C^T C$

Slow Down or Less Oscillation: Weight y' = (CA)X

$$Q = (CA)^{T}CA$$
$$Q = \alpha C^{T}C + \beta (CA)^{T}CA$$

Example: Design a feedback controller so that the 4th-order heat equation has

- No overshoot for a step input, and
- A 2% settling time of 4 seconds

Step response for $Q = 10^4 C^T C$ (blue) as well as the desired response

Adjust the weightings on y and y' $Q = 10^4 \cdot C^T C + 3 \cdot 10^4 (CA)^T CA$

