
Variable Structres Control
NDSU ECE 463/663

Lecture #34

Inst: Jake Glower

Please visit Bison Academy for corresponding 

lecture notes, homework sets, and solutions



Variable Structures Systems (VSS)

VSS is another control law which uses full-state feedback

U = α ⋅ sign(KrR − KxX)

Saturating control is similar:

U =limit(−α, KrR − KxX, α)

R
Kr

Kx

U
B

A

C
XsX Y

relay

VSS Control Law



Both of these are nonlinear controllers.

Eigenvalues don't apply

Poles and zeros don't apply

Only three proofs of stability exist for nonlinear systems

Hyperstability,

H-infinity, and

Lyapunov.



H-Infinity:

If the gain is always less than one, the closed-loop system must be stable.

Useful for analyzing system pertubrations

As long as the perturbation are small enough, stability won't be affected

R E
G(s)

Y

When the phase is 180 degrees, the gain is a + a2 + a3 + a4+



Hyperstability:

If the phase shift of G(s) never reaches 180 degrees, the closed-loop system

must be stable.

You never have positive feedback

Useful for designing model reference adaptive controllers

R E
G(s)

Y



Lyapunov Stability:
Define an energy function which is positive definite.

If you can show the change in energy is always negative definite, the system must be stable.

Example 1:  Use Lyaponov methods to prove the following system is stable:

x
.

= −3x

Step 1:  Define a positive definite energy function:

V =
1

2
x2

Step 2:  Check that the change in energy is negative definite:

V
.

= xx
.

= x(−3x) = −3x2 < 0

This system is stable.



Example 2:  Find the range of k which results in a stable system:

x
.

= −3x + u

u = −kx

Step 1:   Define an energy function:

V =
1

2
x2

Step 2:  Check that the change in energy

is negative definite:

V
.

= xx
.

V
.

= x(−3x − kx)

V
.

= −(3 + k)x2

To be stable

3 + k > 0

k > −3

1/s1

k

-3

XsXU



Example 3:

X
.

= AX + BU

Define a sliding surface

σ = CX

Define an energy function

V =
1

2
σTσ > 0

Pick U so that  is negativeV
.

definite:

V
.

= σTσ
.

< 0

Substituting:

(CX)
T 
CX

.

 < 0

XTCT(CAX + CBU) < 0

1/sB C

A

XsXU

?



If

CBU > CAX

CB > 0

then

XTCT(CBU) < 0

XTCTU < 0

Let

U = −α ⋅ sign(CX)

where

CBα > CAX

1/sB C

A

XsXU

a sign(CX)



If you add in a set point (R), you get

U = α ⋅ sign(KrR − KxX)

R
Kr

Kx

U
B

A

C
XsX Y

relay

VSS Control Law



Example:  Double Integrator:

X
.

=




0 1

0 0




X +





0

1




U

Define the sliding surface to be

σ =  1 1 X

Assume X is bounded by 10

CBU > CAX

α > 10

Then

U = −10 ⋅ sign(CX)

Adding in a reference

U = −10 ⋅ sign((x − R) + (x
.
))

1/sB C

A

XsXU

a sign(CX)



System Response: 

Note that the system behaves like a system with a pole at -1

(the zero in the transfer function from R to )σ

Step Response for a VSS controller with  = (s+1)Xσ



Phase Plane:  

Plot  vs. x x
.

Shows eigenvector for s = -1

Phase Plane for y = ( s + 1) x along with its sliding surface



Problem:  The input chatters

a.k.a. Bang Bang Control

Input u(t).  Note that it chatters from -10 to +10 while you're on the sliding surface.



Saturating Control

Rather than using a relay function, a saturating function with a large gain

results in

Almost the same result (same sliding surface, same closed-loop response), but

The input no longer chatters

U =limit(−10,k(KrR − KxR),10)

R
Kr

Kx

U
B

A

C
XsX Y

saturation

VSS Control Law



Result:

Almost the same

Approach the set point as s  = -1

x (blue) and dx (green).
Saturating Control with sigma = (s+1)x



Phase Plane

Approach the eigenvector (sliding surface) at s = -1

Phase Plane:  Saturating Control with sigma = (s+1)x



But, the input no longer chatters.

Note: the zeros determine the sliding surface and the closed-loop poles

Input (U) for saturating control with sigma = (s+1)x



VSS Control for an RC Filter (real zeros)

Assume 4-stage RC filter:

sX =















−2 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1














X +















1

0

0

0














U

A = [-2,1,0,0;1,-2,1,0;0,1,-2,1;0,0,1,-1]

B = [1;0;0;0]

To place the zero, convert to controller canonical form using Bass Gura: 

Cz =    6    11     6     1

Kx = Cz*inv(T)

Kx =   1.0000    1.0000    2.0000    2.0000



Check that the zeros are at {-1, -2, -3}

eig(A-100*B*Kx)

 -101.0203

   -2.9899

   -1.9898

   -1.0000



Step Response:
 

Step Response with VSS Control:   sigma = (s+1)(s+2)(s+3)x
Position (blue) and velocity (green)



Phase Plane:

Shows the dominant pole at s = -1:

Phase Plane:  position vs. velocity



The input chatters

bang-bang control

Input u(t) with VSS Control.  Once you hit the sliding surface, it chatters between -10 and +10.



Case 2:  Saturating Control.

U = 10 ⋅ sign(KrR − KxX)

becomes

U =limit(−10,100(KrR − KxX),10)

Input u(t0 with Saturating Control.  Once you approach the sliding surface, u(t) stops clipping.



VSS with complex zeros
Pick Cz to place the zeros

Can be real or complex

poly([-1+j*3,-1-j*3,-3])

     1     5    16    30

Kx = [30, 16, 5, 1]*inv(T)

    1.0000    0.0000   10.0000   19.0000



VSS Control:  Step Response with zeros at {-1 + j3,  -1 - j3, -3}



The phase plane is from

Phase Plane:  The log spirals correspond to the complex zeros at {-1 + j3,  -1 - j3}



Input chatters when on the sliding surface

Input, u(t), for VSS control with zeros at {-1 + j3, -1 - j3,  -3}.  Once you hit the sliding surface, the input
chatters between -10 and +10.



If you change to a saturating controller, the response is almost the same

except that the input no longer chatters:

Input, u(t), for a Saturating Control with zeros at {-1 + j3, -1 - j3,  -3}.  Once you hit the sliding surface, the
input drops between -10 and +10.



Summary

VSS & Saturating Control are a form of full-state feedback

 becomes  and U = −KxX σ = CX U = −f(σ)

Zeros of transfer function determine the closed-loop poles

These controllers have some nice properties

Changes in the system dynamics don't affect the closed-loop response

- assuming the zeros don't change

The closed-loop system behaves as a lower-order system

- System order reduced by one

The input is easy to implement

- Slam to  (VSS)±α

A saturating controller is just a VSS controller with a saturating funciton

VSSU = −α ⋅ sign(σ)

SaturatingU = −α⋅limit(−1, −kσ, +1)


