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Variable Structures Systems (VSS)

VSS is another control law which uses full-state feedback
U=ao-sign(K,R—-K,X)

Saturating control is similar:
U =limit(—o, K,R— K, X, )

R — U sX
— Kr ——» B >
relay
A

Kx =

VSS Control Law




Both of these are nonlinear controllers.
- Eigenvalues don't apply

« Poles and zeros don't apply

Only three proofs of stability exist for nonlinear systems
 Hyperstability,
« H-infinity, and

- Lyapunov.




H-Infinity:
If the gain 1s always less than one, the closed-loop system must be stable.

- Useful for analyzing system pertubrations

« As long as the perturbation are small enough, stability won't be affected

When the phase is 180 degrees, the gain is a+a? + a® + a*+




Hyperstability:
If the phase shift of G(s) never reaches 180 degrees, the closed-loop system
must be stable.

« You never have positive feedback

« Useful for designing model reference adaptive controllers




Lyapunov Stability:
 Define an energy function which is positive definite.

- If you can show the change in energy is always negative definite, the system must be stable.

Example 1: Use Lyaponov methods to prove the following system 1s stable:
X =-3X

Step 1: Define a positive definite energy function:
V=2x2

Step 2: Check that the change in energy is negative definite:
V=xx=x(=3x)=-3x><0

This system 1s stable.




Example 2: Find the range of k which results in a stable system:

X=-3x+uU
U =—KkxX
Step 1: Define an energy function:
_ 1,2
V=2x

Step 2: Check that the change in energy
1s negative definite:

V=xx

V= X(—3x — kX)

V=-(3+kx2
To be stable

3+k>0

k>-3
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Example 3:
X=AX+BU

Define a sliding surface
c=CX
Define an energy function

VZ%GTG >0

Pick U so that v is negative
definite:

V=067T6<0
Substituting:

(@0"(cx) <0

XTCT(CAX+CBU) <0
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If
|CBU| > |CAX|
CB>0

then
X'C"(CBU) <0
X'CTU<0

Let
U=-ao-sign(CX)

where

|CBo| > |CAX|

-

gt

a sign(CX)




If you add 1n a set point (R), you get

U=o-sigh(KR—KX)

relay

o
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Example: Double Integrator:

\ 01 0
x{oo}x% }u
Define the sliding surface to be
o= 11X
Assume X 1s bounded by 10
|CBU| > |CAX]
lal > 10
Then
U=-10-sign(CX)
Adding in a reference

U=-10-sign((x—R) + (X))

sX

gt

a sign(CX)




System Response:

- Note that the system behaves like a system with a pole at -1

« (the zero in the transfer function from R to O )
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Step Response for a VSS controller with 6 = (s+1)X




Phase Plane:
« Plot X vs. X

- Shows eigenvector for s = -1
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Phase Plane fory = ( s + 1) x along with its sliding surface




Problem: The input chatters

- a.k.a. Bang Bang Control
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Input u(t). Note that it chatters from -10 to +10 while you're on the sliding surface.
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Saturating Control

Rather than using a relay function, a saturating function with a large gain
results in
« Almost the same result (same sliding surface, same closed-loop response), but

- The input no longer chatters

U =limit(-10, k(K.R— KxR), 10)
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Result:

- Almost the same

- Approach the set point as s =-1
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Saturating Control with sigma = (s+1)x




Phase Plane

- Approach the eigenvector (sliding surface) at s = -1
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Phase Plane: Saturating Control with sigma = (s+1)x

1.2

1.4




But, the input no longer chatters.

- Note: the zeros determine the sliding surface and the closed-loop poles
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Input (U) for saturating control with sigma = (s+1)x




VSS Control for an RC Filter (real zeros)

Assume 4-stage RC filter:
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To place the zero, convert to controller canonical form using Bass Gura:
Cz = 6 11 6 1
Kx = Cz*inv (T)

Kx = 1.0000 1.0000 2.0000 2.0000




Check that the zeros are at {-1, -2, -3}
eig (A-100*B*Kx)

—-101.0203
-2.9899
—-1.9898
-1.0000




Step Response:

Step Response with VSS Control: sigma = (s+1)(s+2)(s+3)x
Position (blue) and velocity (green)
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Phase Plane:

« Shows the dominant pole at s = -1:
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The input chatters

- bang-bang control

0.5

Input u(t) with VSS Control. Once you hit the sliding surface, it chatters between -10 and +10.




Case 2: Saturating Control.
U=10-sign(KR—KxX)
becomes

U =limit(-10, 100(KR — KxX), 10)
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Input u(t0 with Saturating Control. Once you approach the sliding surface, u(t) stops clipping.




VSS with complex zeros

« Pick Cz to place the zeros

+ Can be real or complex
poly ([-1+3*3,-1-3*3,-31])
1 5 16 30

Kx = [30, 16, 5, 1]*inv(T)

1.0000 0.0000 10.0000

19.0000
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VSS Control: Step Response with zeros at {-1 + |3, -1 -3, -3}
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The phase plane 1s from
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Phase Plane: The log spirals correspond to the complex zeros at {-1 + |3, -1 -3}




Input chatters when on the sliding surface
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Input, u(t), for VSS control with zeros at {-1 +j3, -1 - |3, -3}. Once you hit the sliding surface, the input
chatters between -10 and +10.




It you change to a saturating controller, the response 1s almost the same
except that the input no longer chatters:
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Input, u(t), for a Saturating Control with zeros at {-1 + j3, -1 - j3, -3}. Once you hit the sliding surface, the
input drops between -10 and +10.




Summary

VSS & Saturating Control are a form of full-state feedback
« U=-K,.X becomes ¢ = CX and U = —f(G)
- Zeros of transfer function determine the closed-loop poles

These controllers have some nice properties

« Changes in the system dynamics don't affect the closed-loop response
- assuming the zeros don't change

 The closed-loop system behaves as a lower-order system
- System order reduced by one

- The input is easy to implement

- Slam to ol (VSS)

A saturating controller 1s just a VSS controller with a saturating funciton
- U=-u- sign(c) VSS
- U=—-0o-limit(—1,—kc,+1)  Saturating




