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Chapter 14
Measurement Theory

Excerpted from Doeblin, "Measurement Systems"

GENERALIZED PERFORMANCE CHARACTERISTICS OF INSTRUMENTS

If you are trying to choose, from commercially available instruments, the
one most suitable for a proposed measurement, or, alternatively, if you are
engaged in the design of instruments for specific measuring tasks, then
the subject of performance criteria assumes major proportions. That is, to
make intelligent decisions, there must be some quantitative bases for
comparing one instrument (or proposed design) with the possible
alternatives. Now we propose to study in considerable detail the
performance of measuring instruments and systems with regard to how
well they measure the desired inputs and how thoroughly they reject the
spurious inputs.

The treatment of instrument performance characteristics generally has
been broken down into the subareas of static characteristics and dynamic
characteristics, and this plan is followed here. The reasons for such a
classification are several. First, some applications involve the
measurement of quantities that are constant or vary only quite slowly.
Under these conditions, it is possible to define a set of performance criteria
that give a meaningful description of the quality of measurement without
becoming concerned with dynamic descriptions involving differential
equations. These criteria are called the static characteristics. Many other
measurement problems involve rapidly varying quantities. Here the
dynamic relations between the instrument input and output must be
examined,generally by the use of differential equations. Performance
criteria based on these dynamic relations constitute the dynamic
characteristics.

Actually, static characteristics also influence the quality of measurement
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under dynamic conditions, but the static characteristics generally show up
as nonlinear or statistical effects in the otherwise linear differential
equations giving the dynamic characteristics. These effects would make
the differential equations unmanageable, and so the conventional approach
is to treat the two aspects of the problem separately. Thus the differential
equations of dynamic performance generally neglect the effects of dry
friction, backlash, hysteresis, statistical scatter, etc., even though these
effects affect the dynamic behavior. These phenomena are more
conveniently studied as static characteristics, and the overall performance
of an instrument is then judged by a semi-quantitative superposition of the
static and dynamic characteristics. This approach is, of course,
approximate but a necessary expedient.

STATIC CHARACTERISTICS

We begin our study of static performance characteristics by considering
the meaning of the term "static calibration."

Meaning of Static Calibration

All the static performance characteristics are obtained by one form or
another of a process called static calibration. So it is appropriate at this
point to develop a clear concept of what is meant by this term.
In general, static calibration refers to a situation in which all inputs
(desired, interfering. modifying) except one are kept at some constant
values. Then the one input under study is varied over some range of
constant values, which causes the output(s) to vary over some range of
constant values. The input-output relations developed in this way comprise
a static calibration valid under the stated constant conditions of all the
other inputs. This procedure may be repeated, by varying in turn each input
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considered to be of interest and thus developing a family of static input-
output relations. Then we might hope to describe the overall instrument
static behavior by some suitable form of superposition of these individual
effects.

In some cases, if overall rather than individual effects were desired, the
calibration procedure would specify the variation of several inputs
simultaneously. Also if you examine any practical instrument critically, you
will find many modifying and/or interfering inputs, each of which might
have quite small effects and which would be impractical to control. Thus
the statement "all other inputs are held constant" refers to an ideal
situation which can be only approached, but never reached, in practice.
Measurement method describes the ideal situation while measurement
process describes the (imperfect) physical realization of the measure-
ment method.

The statement that one input is varied and all others are held constant
implies that all these inputs are determined (measured) independently of
the output (should be relatively small in a good instrument), the
measurement of these inputs usually need not be at an extremely high
accuracy level. For example, suppose a pressure gage has temperature as
an interfering input to the extent that a temperature change of 100°C
causes a pressure error of 0.100 percent.  Now, if we had measured the
100°C interfering input with a thermometer which itself had an error of 2.0
percent, the pressure error actually would have been 0.102 percent. It
should be clear that the difference between an error of 0.100 and
0.102 percent is entirely negligible in most engineering situations.
However, when calibrating the response of the instrument to its desired
inputs, you must exercise considerable care in choosing the means of
determining the numerical values of these inputs. That is, if a pressure
gage is inherently capable of an accuracy of 0.1 percent, you must certainly
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be able to determine its input pressure during calibration with an accuracy
somewhat greater than this. In other words, it is impossible to calibrate an
instrument to an accuracy greater than that of the standard with which it is
compared. A rule often followed is that the calibration standard should be
at least about 10 times as accurate as the instrument being calibrated.
While we do not discuss standards in detail at this point, it is of utmost
importance that the person performing the calibration be able to answer
the question: How do I know that this standard is capable of its stated
accuracy? The ability to trace the accuracy of a standard back to its
ultimate source in the fundamental standards of the National Institute of
Standards and Technology (Formerly pre-1989 National Bureau of
Standards) is termed traceability.

 In performing a calibration, the following steps are necessary:

I. Examine the construction of the instrument, and identify and list all
the possible inputs.

2. Decide, as best you can, which of the inputs will be significant in the
application for which the instrument is to be calibrated.

3. Procure apparatus that will allow you to vary all significant inputs
over the ranges considered necessary.

4. By holding some inputs constant, varying others, and recording the
output(s), develop the desired static input-output relations.

Now we are ready for a more detailed discussion of specific static
characteristics. These characteristics may be classified as either general or
special. General static characteristics are of interest in every instrument.
Special static characteristics are of interest in only a particular instrument.
We concentrate mainly on general characteristics, leaving the treatment of
special characteristics to later sections of the text in which specific
instruments are discussed.
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Accuracy, Precision, and Bias

When we measure some physical quantity with an instrument and obtain a
numerical value, usually we are concerned with how close this value may
be to the "true" value. It is first necessary to understand that this so-called
true value is, in general, unknown and unknowable, since perfectly exact
definitions of the physical quantities to be measured are impossible. This
can be illustrated by specific example, for instance, the length of a
cylindrical rod. When we ask ourselves what we really mean by the length
of this rod, we must consider such questions as these :

I. Are the two ends of the rod planes?
2. If they are planes, are they parallel?
3. If they are not planes, what sort of surfaces are they?
4. What about surface roughness?

We see that complex problems are introduced when we deal with a real
object rather than an abstract, geometric solid. The term "true value," then,
refers to a value that would be obtained if the quantity under consideration
were measured by an exemplar method,l that is, a method agreed on by
experts as being sufficiently accurate for the purposes to which the data
ultimately will be put.

We must also be concerned about whether we are describing the
characteristics of a single reading of an instrument or of a measurement
process. If we speak of a single measurement, the error is the difference
between the measurement and the corresponding true value, which is
taken to be positive if the measurement is greater than the true value.
When using an instrument, however, we are concerned with the
characteristics of the measurement process associated with that
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instrument. That is, we may take a single reading, but this is a sample from
a statistical population generated by the measurement process. If we know
the characteristics of the process, we can put bounds on the error of the
single measurement, although we cannot tell what the error itself is, since
this would imply that we knew the true value. Thus we are interested in
being able to make statements about the accuracy (lack of error) of our
readings. This can be done in terms of the concepts of precision and bias
of the measurement process.

The measurement process consists of actually carrying out, as well as pos-
sible, the instructions for performing the measurement, which are the
measurement method. (Since calibration is essentially a refined form of
measurement, these remarks apply equally to the process of calibration.) If
this process is repeated over and over under assumed identical conditions,
we get a large number of readings from the instrument. Usually these
readings will not all be the same, and so we note immediately that we may
try to ensure identical conditions for each trial, but it is never exactly
possible. The data generated in this fashion may be used to describe the
measurement process so that, if it is used in the future, we may be able to
attach some numerical estimates of error to its outputs.

If the output data are to give a meaningful description of the measurement
process, the data must form what is called a random sequence. Another
way of saying this is that the process must be in a state of statistical
control. The concept of the state of statistical control is not a particularly
simple one, but we try to explain its essence briefly. First we note that it is
meaningless to speak of the accuracy of an instrument as an isolated
device. We must always consider the instrument plus its environment and
method of use, that is, the instrument plus its inputs. This aggregate
constitutes the measurement process. Every instrument has an infinite
number of inputs; that is, the causes that can conceivably affect the output,
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if only very slightly, are limitless. Such effects as atmospheric pressure,
temperature, and humidity are among the more obvious. But if we are
willing to "split hairs," we can uncover a multitude of other physical causes
that could affect the instrument with varying degrees of severity. In
defining a calibration procedure for a specific instrument, we specify that
certain inputs must be held "constant" within certain limits. These inputs, it
is hoped, are the ones that contribute the largest components to the overall
error of the instrument. The remaining infinite number of inputs is left
uncontrolled, and it is hoped that each of these individually contributes
only a very small effect and that in the aggregate their effect on the
instrument output will be of a random nature. If this is indeed the case, the
process is said to be in statistical control. Experimental proof that a
process is in statistical control is not easy to come by; in fact, strict
statistical control is unlikely of practical achievement. Thus we can only
approximate this situation.

Lack of control is sometimes obvious, however, if we repeat a
measurement and plot the result (output) versus the trial number. Figure
3.1a shows such a graph for the calibration of a particular instrument. In
this instance, it was ascertained after some study that the instrument
actually was much more sensitive to temperature than had been thought.
The original calibration was carried out in a room without temperature
control. Thus the room temperature varied from a low in the morning to a
peak in the early afternoQn and then dropped again in the late afternoon.
Since the 10 trials covered a period of about one day, the trend of the curve
is understandable. By performing the calibration in a temperature-
controlled room, the graph of Fig. 3.1b was obtained. For the detection of
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more subtle deviations from statistical control, the methods of statistical
quality-control charts are useful.  If the measurement process is in
reasonably good statistical control and if we repeat a given measurement
(or calibration point) over and over, we will generate a set of data exhibiting
random scatter. As an example, consider the pressure gage of Fig. 3.2.
Suppose we wish to determine the relationship between the desired input
(pressure) and the output (scale reading). Other inputs which could be
significant and which might have to be controlled during the pressure
calibration include temperature, acceleration, and vibration.
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Temperature can cause expansion and contraction of instrument parts in
such a way that the scale reading will change even though the pressure
has remained constant. An instrument acceleration along the axis of the
piston rod will cause a scale reading even though pressure again has
remained unchanged. This input is significant if the pressure gage is to be
used aboard a vehicle of some kind. A small amount of vibration actually
may be helpful to the operation of an instrument, since vibration may
reduce the effects of static friction. Thus if the pressure gage is to be
attached to a reciprocating air compressor (which always has some
vibration), it may be more accurate under these conditions than it would be
under calibration conditions where no vibration was provided. These
examples illustrate the general importance of carefully considering the
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relationship between the calibration conditions and the actual application
conditions.

Suppose, now, that we have procured a sufficiently accurate pressure stan-
dard and have arranged to maintain the other inputs reasonably close to
the actual application conditions. Repeated calibrations at a given pressure
(say, 10 kPa) might give the data of Fig. 3.3. Suppose we now order the
readings from the lowest (9.81) to the highest (10.42) and see how many
readings fall in each interval of, say, 0.05 kPa, starting at 9.80. The result
can be represented graphically as in Fig. 3.4a.
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 Suppose we now define the quantity Z by and we plot a "bar graph " with
height Z for each interval.

Such a "histogram" is shown in Fig. 3.4b. It should be clear from Eq. (3.1)
that the area of a particular "bar" is numerically equal to the probability that
a specific reading will fall in the associated interval. The area of the entire
histogram must then be 1.0 (100 percent = 1.0), since there is 100 percent
probability that the reading will fall somewhere between the lowest and
highest values, at least based on the data available. If it were now possible
to take an infinite number of readings, each with an infinite number of
significant digits, we could make the chosen intervals as small as we
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pleased and still have each interval contain a finite number of readings.

Thus the steps in the graph of Fig. 3.4b would become smaller and smaller,
with the graph approaching a smooth curve in the limit. If we take this
limiting abstract case as a mathematical model for the real physical
situation, the function Z = f(x) is called the probability density function for
the mathematical model of the real physical process (see Fig. 3.5a).

The probability information sometimes is given in terms of the cumulative
distribution function F(x), which is defined by and is shown in Fig. 3.5b

From the infinite number of forms possible for probability density
functions, a relatively small number are useful mathematical models for
practical applications; in fact, one particular form is quite dominant. The
most useful density function or distribution is the normal or Gaussian
function, which is given by
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Equation (3.4) defines a whole family of curves depending on the particular

numerical values of µ (the mean value) and σ (the standard deviation). The

shape of the curve is determined entirely by σ, with µ serving only to locate
the position of the curve along the x axis. The cumulative distribution
function F(x) cannot be written explicitly in this case because the integral
of Eq. (3.3) cannot be carried out; however, the function has been tabulated
by performing the integration by numerical means. Figure 3.6 shows that a
small value of o indicates a high probability that a "reading" will be found

close to µ. Equation (3.4) also shows that there is a small probability that
very large (approaching +- infinity) readings will occur.

This is one of the reasons why a true Gaussian distribution can never
occur in the real world; physical variables are always limited to finite
values. There is zero probability, for example, that the pointer on a
pressure gage will read 100 kPa when the range of the gage is only 20 kPa.
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Real distributions must thus, in general, have their " tails " cut off, as in
Fig. 3.7. Although actual data may not conform exactly to the Gaussian

distribution, very often they are sufficiently close to allow use of the
Gaussian model in engineering work. It would be desirable to have
available tests that would indicate whether the data were "reasonably"
close to Gaussian, and two such procedures are explained briefly. We must
admit however, that in much practical work the time and effort necessary
for such tests cannot be justified, and the Gaussian model is simply
assumed until troubles arise which justify a closer study of the particular
situation.

The first method of testing for an approximate Gaussian distribution in-
volves the use of probability graph paper. If we take the cumulative
distributionfunction for a Gaussian distribution and suitably distort the



14-15

vertical scale of the graph, the curve can be made to plot as a straight line,
as shown in Fig. 3.8. (This, of course, can be done with any curvilinear
relation, not just probability curves.) Such graph paper is commercially
available and may be used to give a rough, qualitative test for conformity to
the Gaussian distribution. For example, consider the data of Fig. 3.3. These
data may be plotted on Gaussian probability graph paper as follows: First
layout on the uniformly graduated horizontal axis a numerical scale that
includes all the pressure readings. Now the probability graph paper
represents the cumulative distribution, so that the ordinate of any
point represents the probability that a reading will be less than the
abscissa of that particular point. This probability, in terms of the sample of
data available, is simply the percentage (in decimal form) of points that fell
at or below that particular value. Figure 3.9a shows the resulting plot. Note

that the highest point (10.42) cannot be plotted since 100 percent cannot
appear on the ordinate scale.

Also shown in Fig. 3.9a is the "perfect Gaussian line," the straight line that
would be perfectly followed by data from an infinitely large sample of
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Gaussian data which had the same µ and σ values as our actual data

sample. To plot this line, we must estimate µ from the sample mean value
X, using

The data of Fig. 3.3 give X = 10.11 and s = 0.14 kPa. Two points that may be
used to plot any perfect Gaussian line are (X, 50%) and (X + s, 84.1 %),
which yield the line of Fig. 3.9a for our data. Superimposing this line on our
actual data, we may judge visually and qualitatively whether our data are
"close to" or "far from" Gaussian. Note that there is no hope of ever
proving real-world data to be Gaussian. There are always physical
constraints which require real data to be at least somewhat non-Gaussian.

For a perfect Gaussian distribution, it can be shown that

68% of the readings lie within +- 1σ of µ

95% of the readings lie within +- 2σ of µ (3.9)

99.7% of the readings lie within +- 3σ of µ

Thus if we assume that our real distribution is nearly Gaussian, we might
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predict, for instance, that if more readings were taken, 99.7 percent would

fall within +- 0.42 kPa of 10.11. The estimates X and σ and  µ are themselves
random variables and can be improved by taking more readings. For
example,

which clearly shows a reduction in uncertainty for X as sample size N
increases.

Having considered the problem of determining the normality of scattered
data, we return to the main business of this section, that is, definition of the
terms "accuracy," "precision," and "bias." Up to now, we have been
examining the situation in which a single true value is applied repeatedly
and the resulting measured values are recorded and analyzed. In an actual
instrument calibration, the true value is varied, in increments, over some
range, causing the measured value also to vary over a range. Very often
there is no multiple repetition of a given true value. The procedure is
merely to cover the desired range in both the increasing and the
decreasing directions. Thus a given true value is applied, at most, twice if
we choose to use the same set of true values for both increasing and
decreasing readings.

As an example, suppose we wish to calibrate the pressure gage of Fig. 3.2
for the relation between the desired input (pressure) and the output (scale
reading). Figure 3.13a gives the data for such a calibration over the range 0
to 10 kPa. In this instrument (as in most but not all), the input-output
relation is ideally a straight line. The average calibration curve for such an
instrument generally is taken as a straight line which fits the scattered data
points best as defined by some chosen criterion. The most common is the
least-squares criterion, which minimizes the sum of the squares of the
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vertical deviations of the data points from the fitted line. (The least-squares
procedure also can be used to fit curves other than straight lines to
scattered data.) The equation for the straight line is taken as

The symbol Sqo represents the standard deviation of qo. That is, if qi were
fixed and then repeated over and over, qo would give scattered values, with
the amount of scatter being indicated by Sqo. If we assume that this Sqo

would be the same for any value of qi, we can calculate Sqo using all the
data points of Fig. 3.13a and without having to repeat anyone qi many
times. For this example; calculation gives Sqo = 0.20 kPa. Then Sm = 0.0134



14-19

and Sb= 0.078 kPa. Assuming a Gaussian distribution and the 99.7 percent
limits (+-3s), we could give m as 1.08+-0.04 and b as -0.85+-0.24 kPa.

In using the calibration results, the situation is such that qo (the indicated
pressure) is known and we wish to make a statement about qi (the true
pressure). We should note that in computing Sqo either of two approaches
could be used. We might use data such as in Fig. 3.13a and apply Eq. {3.24)
or, alternatively, repeat a given qi many times and compute Sqo from Eq.
{3.8). If Sqo is actually the same for all values of qi {as assumed above),
these two methods should give the same answer for large samples. In
computing Sqi however, the second method is not feasible because we
cannot, in general, fix qo in a calibration and then repeat that point over and
over to get scattered values of qi .This is because qi is truly an independent
variable {subject to choice), whereas qo is dependent {not subject to
choice). Thus, in computing Sqi an approach such as Eq. {3,26) is
necessary.

A calibration such as that of Fig. 3.13a allows decomposition of the total
error of a measurement process into two parts, the bias and the
imprecision {Fig. 3.13b). That is, if we get a reading of 4.32 kPa, the true
value is given as 4.79 +- 0.54 kPa {3s limits), the bias would be -0.47 kPa,
and the imprecision +- .54 kPa {3s limits). Of course, once the instrument
has been calibrated, the bias can be removed, and the only remaining error
is that due to imprecision. The bias is also called the systematic error
{since it is the same for each reading and thus can be removed by
calibration). The error due to imprecision is called the random error, or
nonrepeatability, since it is, in general, different for every reading and we
can only put bounds on it, but cannot remove it. Thus calibration is the
process of removing bias and defining imprecision numerically. The total
inaccuracy of the process is defined by the combination of bias and



14-20

imprecision. If the bias is known, the total inaccuracy is entirely due to
imprecision and can be specified by a single number such as Sqi.

A more refined method of specifying uncertainty, which recognizes that Sqi

values based on small samples {N < 30) are less reliable than those based
on large samples, is available. By using the statistical t distribution,
computed Sqj values are adjusted to reflect the effect of sample size. This
reference gives a very comprehensive treatment of measurement
uncertainty and is recommended for those wishing further details.
In actual engineering practice, the accuracy of an instrument usually is
given by a single numerical value; very often it is not made clear just what
the precise meaning of this number is meant to be. Often, even though a
calibration, as in Fig. 3.13, has been carried out, Sqi is not calculated. The
error is taken as the targest horizontal deviation of any data point from the
fitted line. In Fig. 3.13 this occurs at qi = 0 and amounts to 0.25 kPa. The
inaccuracy in this case thus might be quoted as +-2.5 percent of full scale.
Note that this corresponds to about +-2Sqi in this case. This practice is no
doubt due to the practical viewpoint that when a measurement is taken, all
we really want is to say that it cannot be incorrect by more than some
specific value; thus the "easy way out" is simply to give a single number.
This would be legitimate if the bias were known to be zero {removed by
calibration) and if the plus-or-minus limit given were specified as +- s, +-2s,
However, if the bias is unknown (and not zero), the quotation of a single
number for the total inaccuracy is somewhat unsatisfactory, although it
may be a necessary expedient.

One reason for this is that if we are trying to estimate the overall accuracy
of a measurement system made up of a number of components, each of
which has a known inaccuracy, the method of combining the individual
inaccuracies is different for systematic errors (biases) than for random
errors (imprecisions). Thus, if the number given for the total inaccuracy of
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a given component contains both bias and imprecision in unknown
proportions, the calculation of overall system inaccuracy is confused.
However, in many cases there is no alternative, and by calculation from
theory, past experience, and/or judgment the experimenter must arrive at
the best available estimate of the total inaccuracy, or uncertainty (as it is
sometimes called), to be attached to the reading. In such cases, a
useful viewpoint is that we are willing to bet with certain odds (say 19 to 1)
that the error falls within the given limits. Then such limits may be
combined as if they were imprecisions in calculations of overall system
error.

Irrespective of the precise meaning to be attached to accuracy figures pro-
vided, say, by instrument manufacturers, the form of such specifications is
fairly uniform. More often than not, accuracy is quoted as a percentage
figure based on the full-scale reading of the instrument. Thus if a pressure
gage has a range from 0 to 10 kPa and a quoted inaccuracy of+-1.0 percent
of full scale, this is to be interpreted as meaning that no error greater than
+-0.1 kPa can be expected for any reading that might be taken on this gage,
provided it is "properly" used.  The manufacturer mayor may not be explicit
about the conditions required for "proper use." Note that for an actual
reading of 1 kPa, a 0.1-kPa error is 10 percent of the reading.

Another method sometimes utilized gives the error as a percentage of the
particular reading with a qualifying statement to apply to the low end of the
scale. For example, a spring scale might be described as having an
naccuracy of +-0.5 percent of reading or +-0.1 N, whichever is greater. Thus
for readings less than 20 N, the error is constant at +-0.1 N, while for larger
readings the error is proportional to the reading.
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Chapter 14 continued

Combination of Component Errors in Overall System-Accuracy
Calculations

A measurement system is often made up of a chain of components, each of
which is subject to individual inaccuracy. If the individual inaccuracies are known,
how is the overall inaccuracy computed? A similar problem occurs in
experiments that use the results (measurements) from several different
instruments to compute some quantity. If the inaccuracy of each instrument is
known, how is the inaccuracy of the computed result estimated? Or, inversely, if
there must be a certain accuracy in a computed result, what errors are allowable
in the individual instruments?

To answer the above questions, consider the problem of computing a quantity N,
where N is a known function of the n independent variables u1, u2, u3 , ..., un.
That is,

-
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The absolute-value signs are used because some of the partial derivatives
might be negative, and for a positive ∆u such a term would reduce the total error.
Since an error ∆u is, in general, just as likely to be positive as negative, to
estimate the maximum possible error, the absolute-value signs must be used as
in Eq. (3.32). The form of Eq. (3.32) is very useful since it shows which variables
(u's) exert the strongest influence on the accuracy of the overall result. That is, if,
say, δf /δu3 is a large number compared with the other partial derivatives, then a
small ∆u3 can have a large effect on the total Ea. If the relative or percentage
error Er is desired, clearly it is given by

So the computed result may be expressed as either N ± Ea or N ± Er %,
and the interpretation is that we are certain this error will not be exceeded since
this is how the ∆u's were defined.

In carrying out the above computations, questions of significant figures and
rounding will occur. While hand calculators allow us to easily carry many digits
(without the need to think about how many are really meaningful), even here,
rounding may not be entirely foolish. The tradeoff involved is between the time it
takes to properly round and the time it takes (plus the greater probability of
misentering a digit) to enter a long string of digits. Each individual will have to
personally resolve this tradeoff. Be sure to note, however, that irrespective of
what is done at intermediate steps, the final result must always be rounded to a
number of digits consistent with the accuracy of the basic data.

When the delta u's are considered not as absolute limits of error, but rather as
statistical bounds such as +- 3s limits, probable errors, or uncertainties, the for-
mulas for computing overall errors must be modified. It can be shown that the
proper method of combining such errors is according to the root-sum square (rss)
formula
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The overall error Earss, then has the same meaning as the individual errors. That
is, if ∆ui represents a +-3s limit on ui, then Earss represents a +-3s limit on N, and
99.7 percent of the values of N can be expected to fall within these limits (if
Gaussian).  Equation (3.36) always gives a smaller value of error than does Ea.
(3.32).

Static Sensitivity

When an input-output calibration such as that of Fig. 3.J3 has been performed,
the static sensitivity of the instrument can be defined as the slope of the calibra-
tion curve. If the curve is not nominally a straight line, the sensitivity will vary
with the input value, as shown in Fig. 3.16b. To get a meaningful definition of
sensitivity, the output quantity must be taken as the actual physical output, not
the meaning attached to the scale numbers. That is, in Fig. 3.13 the output
quantity is plotted as kilopascals; however, the actual physical output is an
angular rotation of the pointer. Thus to define sensitivity properly, we must know
the angular spacing of the kilopascal marks on the scale of the pressure gage.
Suppose this is 5 angular degrees/kPa. Since we already calculated the slope in
kilopascals per kilopascal as 1.08 in Fig. 3.13, we get the instrument static sensi-
tivity as (5)(1.08) = 5.40 angular degrees/kPa. In this form the sensitivity allows
comparison of this pressure gage with others as regards its ability to detect
pressure changes.
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While the instrument's sensitivity to its desired input is of primary concern,
its sensitivity to interfering and/or modifying inputs also may be of interest. As an
example, consider temperature as an input to the pressure gage mentioned
above.  Temperature can cause a relative expansion and contraction that will
result in a change in output reading even though the pressure has not changed.
In this sense, it is an interfering input. Also, temperature can alter the modulus of
elasticity of the pressure-gage spring, thereby affecting the pressure sensitivity.
In this sense, it is a modifying input. The first effect is often called a zero drift
while the second is a sensitivity drift or scale1actor drift. These effects can be
evaluated numerically by running suitable calibration tests. To evaluate zero drift,
the pressure is held at zero while the temperature is varied over a range and the
output reading recorded. For reasonably small temperature ranges, the effect is
often nearly linear then we can quote the zero drift as, say, 0.01 angular
degree/Co. Sensitivity drift may be found by fixing the temperature and running a
pressure calibration to determine pressure sensitivity. Repeating this for various
temperatures should show the effect of temperature on pressure sensitivity.
Again, if this is nearly linear, we can specify sensitivity drift as, say, 0.0005
(angular degree/kPa)/C degree.

Figure 3,17 shows how the superposition of these two effects determines the
total error due to temperature. If the instrument is used for measurement only
and the temperature is known, numerical knowledge of zero drift and sensitivity
drift allows correction of the readings. If such corrections are not feasible, then
knowledge of the drifts is used mainly to estimate overall system errors due to
temperature.
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Linearity

If an instrument's calibration curve for desired input is not a straight line, the
instrument may still be highly accurate. In many applications, however, linear
behavior is most desirable. The conversion from a scale reading to the corre-
sponding measured value of input quantity is most convenient if we merely have
to multiply by a fixed constant rather than consult a nonlinear calibration curve
or compute from a nonlinear calibration equation. Also, when the instrument is
part of a larger data or control system, linear behavior of the parts often simplifies
design and analysis of the whole. Thus specifications relating to the degree
of conformity to straight-Iine behavior are common.

Several definitions of linearity are possible. However, independent linearity
seems to be preferable in many cases. Here the reference straight line is the
least-squares fit, as in Fig. 3.13. Thus the linearity is simply a measure of the
maximum deviation of any calibration points from this straight line. This may be
expressed as a percentage of the actual reading, a percentage of full-scale
reading, or a combination of the two. The last method is probably the most
realistic and leads to the following type of specification:

Independent nonlinearity = +- A percent of reading or
   +- B percent of full scale, whichever is greater (3.52)

The first part (+-A percent of reading) of the specification recognizes the desir-
ability of a constant-percentage nonlinearity, while the second (+-B percent of full
scale) recognizes the impossibility of testing for extremely small deviations near
zero. That is, if a fixed percentage of reading is specified, the absolute deviations
approach zero as the readings approach zero. Since the test equipment should
be about 10 times as accurate as the instrument under test, this leads to
impossible requirements on the test equipment. Figure 3.19 shows the type of
tolerance band allowed by specifications of the form (3.52).

Note that in instruments considered essentially linear, the specification of
nonlinearity is equivalent to a specification of overall inaccuracy when the
common (nonstatistical) definition of inaccuracy is used. Thus in many com-
mercial linear instruments, only a linearity specification (and not an accuracy
specification) may be given. The reverse (an accuracy specification but not a
linearity specification) may be true if nominally linear behavior is implied by the
quotation of a fixed sensitivity figure.

In addition to overall accuracy requirements, linearity specifications often are
useful in dividing the total error into its component parts. Such a division is
sometimes advantageous in choosing and/or applying measuring systems for a
particular application in which, perhaps, one type of error is more important
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particular application in which, perhaps, one type of error is more important
than another. In such cases, different definitions of linearity may be especially
suitable for certain types of systems. The Scientific Apparatus Makers Associ-
ation standard load-cell (force-measuring device) terminology, for instance, de-
fines linearity as follows: "The maximum deviation of the calibration curve from
a straight line drawn between no-load and full-scale load outputs, expressed as a
percentage of the full-scale output and measured on increasing load only." The
breakdown of total inaccuracy into its component parts is carried further in the
next few sections, where hysteresis, resolution, etc., are considered.

Threshold, Resolution, Hysteresis, and Dead Space

Consider a situation in which the pressure gage of Fig. 3.2 has the input pressure
slowly and smoothly varied from zero to full scale and then back to zero. If there
were no friction due to sliding of moving parts, the input-output graph might
appear as in Fig. 3.20a. The noncoincidence of loading and unloading curves is
due to the internal friction or hysteretic damping of the stressed parts (mainly the
spring). That is, not all the energy put into the stressed parts upon loading is
recoverable upon unloading, because of the second law of thermodynamics,
which rules out perfectly reversible processes in the real world. Certain materials
exhibit a minimum of internal friction, and they should be given consideration in
designing highly stressed instrument parts, provided that their other properties
are suitable for the specific application. For instruments with a usable range on
both sides of zero, the behavior is as shown in Fig. 3.20b. If it were possible to
reduce internal friction to zero but external sliding friction were still present, the
results might be as in Fig. 3.20c and d, where a constant coulomb (dry) friction
force is assumed. If there is any free play or looseness in the mechanism of an
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instrument, a curve of similar shape will result. Hysteresis effects also show up in
electrical phenomena. One example is found in the relation between output
voltage and input field current in a dc generator, which is similar in shape to Fig.
3.20b. This effect is due to the magnetic hysteresis of the iron in the field coils.
In a given instrument, a number of causes such as those just mentioned may
combine to give an overall hysteresis effect which might result in an input-output
relation as in Fig. 3.20e. The numerical value of hysteresis can be specified in
terms of either input or output and usually is given as a percentage of full scale.
When the total hysteresis has a large component of internal friction, time effects
during hysteresis testing may confuse matters, since sometimes significant
relaxation and recovery effects are present. Thus in going from one point to
another in Fig. 3.20e, we may get a different output reading immediately after
changing the input than if some time elapses before the reading is taken. If this is
the case, the time sequence of the test must be clearly specified if reproducible
results are to be obtained.
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If the instrument input is increased very gradually from zero, there will be
some minimum value below which no output change can be detected. This mini-
mum value defines the threshold of the instrument. In specifying threshold, the
first detectable output change often is described as being any "noticeable" or
"measurable" change. Since these terms are somewhat vague, to improve re-
producibility of threshold data it may be preferable to state a definite numerical
value for output change for which the corresponding input is to be called the
threshold.

If the input is increased slowly from some arbitrary (nonzero) input value,
again the output does not change at all until a certain input increment is exceed-
ed. This increment is called the resolution; again, to reduce ambiguity, it is
defined as the input increment that gives some small but definite numerical
change in the output. Thus resolution defines the smallest measurable input
change while threshold defines the smallest measurable input. Both threshold
and resolution may be given either in absolute terms or as a percentage of full-
scale reading. An instrument with large hysteresis does not necessarily have
poor resolution. Internal friction in a spring can give a large hysteresis, but even
small changes in input (force) cause corresponding changes in deflection, giving
high resolution.

The terms "dead space," "dead band," and "dead zone" sometimes are used
interchangeably with the term "hysteresis." However, they may be defined as the
total range of input values possible for a given output and thus may be numeri-
cally twice the hysteresis as defined in Fig. 3.20e. Since none of these terms is
completely standardized, you should always be sure which definition is meant.

Scale Readability

Since the majority of instruments that have analog (rather than digital) output
are read by a human observer noting the position of a "pointer" on a calibrated
scale, usually it is desirable ,for data takers to state their opinions as to how
closely they believe they can read this scale. This characteristic, which depends
on both the instrument and the observer, is called the scale readability. While this
characteristic logically should be implied by the number of significant figures
recorded in the data, it is probably good practice for the observer to stop and
think about this before taking data and to then record the scale readability. It
may also be appropriate at this point to suggest that all data, including scale
readabilities, be given in decimal rather than fractional form. Since some instru-
ment scales are calibrated in 1/4's, 1/2's, etc., this requires data takers to convert
to decimal form before recording data. This procedure is considered preferable to
recording a piece of data as, say, 21 1/4 and then later trying to decide whether
21.250 or 21.3 was meant.
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Span

The range of variable that an instrument is designed to measure is sometimes
called the span. Equivalent terminology also in use states the "low operating
limit" and "high operating limit." For essentially linear instruments, the term
"linear operating range " is also common. A related term, which, however, implies
dynamic fidelity also, is the dynamic range. This is the ratio of the largest to the
smallest dynamic input that the instrument will faithfully measure. The number
representing the dynamic range often is given in decibels, where the decibel (dB)
value of a number N is defined as dB = 20 log N. Thus a dynamic range of 60 dB
indicates the instrument can handle a range of input sizes of 1,000 to 1.


