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CHAPTER 7 (Draft)
ADVANCED CARDIAC CONCEPTS

The purpose of this chapter is to expose the cardiovascular engineer to more
advanced cardiac concepts.  The rationale is that by understanding cardiac
function in more complete terms, insights into better diagnostics and therapies
can be achieved.

Chapter 7 learning objectives:

1. Time varying elastance concept
2. Mechanical and electrical models of time-varying elastance
3. Equations defining time-varying elastance
4. Infinite resistance PV loop
5. Infinite capacitance PV loop
6. Problems with time-varying elastance
7. Source parameters (visco-elastic properties)

7.1 Time-varying Elastance Concept

To begin our study of the cardiac time-varying elastance, let us examine a simple

coiled spring (Figure 7.1).  A real spring has an initial unstretched length, Lo.

Now, to stretch the spring we must apply a force to it.  The greater the force, the

greater the length.
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The slope of the force-distance relationship is termed the “spring-constant”, K.

The stiffer the spring, the larger K will be and the more force is required to

lengthen the spring. Let’s make the spring constant, K, variable.  Further, let’s

assume that if we electrically stimulate this special spring, the spring constant will

increase.  One can visualize this by a much thicker, stronger spring.  So let’s take

the elongated situation of Figure 7.1.  We’ve stretched the spring by hanging a

weight, F, from Lo to some new length, L1.

At this point let’s apply some electrical stimulation to the spring and as a result

the spring becomes thicker and stronger.  This will tend to pull the weight up,

because it is equivalent to hanging the weight from a thicker, stronger spring and

having it stretch less.   The more we electrically stimulate the spring, the thicker

and stronger it becomes and the more we shorten the spring resulting in lifting

weight, F, even higher, as shown in Figure 7.2.

If the spring shortens with a constant force it is termed isotonic.  If the spring is

electrically stimulated and not allowed to shorten (clamped firmly at both ends) it

is termed isometric.  Figure 7.3 depicts an isometric process. In an isometric
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process, the spring doesn’t shorten, but the force generated increases from F1 to

F2 due to the changes in K.

To an approximation, cardiac and skeletal muscle can be represented by the

idea of a spring that can change its spring constant. The varying spring constant,

K, is the one dimensional version of time-varying cardiac elastance.  Cardiac

elastance, however, relates pressure (force/area) and volume (area x heighth).

Rather than isometric and isotonic processes, we speak of isovolumic and

isobaric processes, repectively.  Rather than a force-length curve, we speak of

pressure-volume curves.  Rather than an unstretched length, Lo, we speak of

filling volume, Vo.  Thus, the concepts of a mechanical spring with a variable

spring constant and cardiac muscle with a time varying elastance are quite

similar. We can also represent a time varying elastance using an electrical

component – the capacitor.  Instead of pressure, we can use voltage and instead

of volume we can refer to charge.  Thus, we can convert cardiac concepts into

either mechanical or electrical terms.

Armed with this information, let us return to the PV loop and examine it from a

time-varying elastance point-of-view.  First, let’s construct a model to help us

view pressure volume loops.  Figure 7.4 shows such a model.  Here we have a
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compressed time-varying elastance connected to a piston.  As the elastance

increases, the compressed elastance becomes stronger and trys to “push” the

piston upward.  In actuality, the elastance shortens, but for graphical simplicity,

the elastance is shown here to lengthen.  The results derived for this are no

different than if the elastance shortened.  In any event, as the elastance gets

stonger, it pushes against the piston isovolumically until the pressure inside the

ventricle gets larger than the aortic pressure, at which time the aortic valve opens

and the spring is allowed to lengthen, ejecting volume.  As it lengthens, the

piston sweeps out a stroke distance.  The amount of stroke of the piston

(multipled by the cross sectional area of the cylinder) is the stroke volume.  If the

elastance now decreases, the ventricular pressure falls, the aortic valve closes

and the elastance decreases isovolumically until the ventricular pressure falls

below the atrial pressure.  Now the heart fills with blood and the process

continues.  Let’s view this process on the PV plane in Figure 7.5.  Starting at

point 1, the elastance is represented by the diastolic or filling elastance.  Now the

elastance begins to increase to point 2.  Currently most researchers believe that

Vo remains constant and that the elastance line rotates about Vo.  Similar to the

variable spring constant example, the elastance continues to increase to point 3

and then to point 4.  This process from point 1 to 4 is the isovolumic contraction
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phase.  Once the ventricular pressure rises above the aortic pressure ejection

begins (point 4).  Depending on what the heart is ejecting to, a complex pressure

volume trajectory is followed until point 6 is reached.  Here the ESPVR is

reached and from this point on the elastance begins to decrease isovolumically

until point 9 where ventricular pressure falls below atrial pressure and filling

begins.  As filling progresses along the diastolic elastance the pressure in the

ventricle rises until point 1 is reached and the process starts all over again.

The work that the elastance performed is the external work area and the area

between ESPVR, diastolic filling, Vo and ESV is the potential work.  Thus, our

first model of the heart can be thought of as a time-varying elastance.  Armed

with this knowledge, we can examine what the effects of various arterial loads on

the heart might be when viewed from the PV loop.
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First, let’s place an infinite resistance on the outflow of the ventricle.  This could

be accomplished by clamping the aorta shut and not allowing any ejection to

occur.  The result would be a totally isovolumic beat and would look similar to

Figure 7.6.

Thus, for an infinite load resistance, no outflow can occur and the PV loop

becomes a straight vertical line.  The maximum pressure during the PV loop will

be attained at  ESPVR, according to this model.

Another interesting type of arterial load is a purely compliant vessel, essentially a

balloon with compliance, C, attached to the outflow of the ventricle (Figure 7.7).

Here as the heart ejects its volume, the balloon receives that volume and the

pressure in the balloon and ventricle will be approximately the same.  Thus as we

add volume to the balloon its pressure increases in a linear fashion.  At the point
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the ESPVR is reached, ejection will cease.  The point of these various examples

is to show that the filling phase profiles are determined, in part, by the type of the

load attached to the outflow of the ventricle.

Let’s try another example.  In this case, let’s apply a balloon with a very large

compliance.  Let’s make compliance so large that any volume added to the

balloon does not increase the pressure.  Figure 7.8 shows the ejection phase for

this situation.  Because the large compliance doesn’t experience a pressure

increase when volume is added to it, the ejection phase of the PV loop will be

horizontal.

In the final example, we will place a finite compliance that has a leak in it.  Thus,

as we push more volume into the compliance, some will leak out again reducing

the pressure.  This PV loop can take on an infinite number of profiles depending

on the relative size of the compliance and the amount of leak.  One possible
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profile for this situation is shown in Figure 7.9.  As luck would have it, this one

looks similar to actual PV loops and might indicate that the arterial load on a

ventricle may have compliant and resistive properties.  The rapid initial upswing

in the pressure is because of the compliance and the later fall in pressure is due

to the leak resistance.  Figure 7.10 shows the ventricle model with an arterial

model.  Important in all this is that the afterload on the heart will affect measures

of its performance.
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Section 7.3  Mathematical Descriptions
The time-varying elastance is described by the equation for a straight line:

)]()[( tVVEDVtLVP EJo −−= ε
where:

LVP = left ventricular pressure
Elastance  VaryingTime=)(tε

EDV =  End Diastolic Volume
Vo   =  Filling Volume
VEJ(t) = Volume Ejected as a Function of Time

and,

∫= dtAoFtVEJ  )(

∫==
Ejection

EJEJ AoFSVtV dt )(

where:
AoF = Aortic Flow
tEJ = total time of ejection
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The aforementioned set of equations describes cardiac function from the

point of view that the driving element of a cardiac contraction is a variable

elastance.  This time varying elastance generates an increase in pressure and

ultimately sweeps out a volume – thereby delivering volume to the arterial (or

pulmonary) system.  Because cardiovascular engineers come from various

backgrounds we will also represent cardiac function in circuit representation.

Just as a spring stores mechanical energy, a capacitor stores electrical energy.

This plot is similar to the force-distance curve for a spring.  In this regard,

voltage is analogous to pressure and charge is analogous to volume.  Thus one

can have a time varying electrical capacitor (compliance) that will mimic a basic

property of cardiac function.

Figure 7.12 illustrates the mechanical and electrical models of the heart.

In summary, the heart is a three-dimensional object, whose walls are constructed

of a contractile material that is oriented in many directions.  We can abstract this

into a regular geometry (such as a sphere or ellipsoid) that has a contractile

material shell.  However, this requires a three-dimensional analysis, thus we can

opt for a simpler view by using a lumped one-dimensional models such as those

shown in Figure 7.12.  No model is perfect and with each choice of model comes
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its own limitations.  Usually a good principle to follow is to use the simplest model

that sheds light on the information desired.

If one looks at examining cardiac function, it quickly becomes clear that finding

the elusive load-independent metric that reflects cardiac function becomes

difficult.  For example, the maximum pressure a ventricle can generate is

dependent on the initial stretch of the myocardium, that is to say pre-load and the

amount of volume it ejects is dependent on afterload.  The greater the pre-load

the greater the pressure, thus just measuring pressure and/or flow will not be

adequate to estimate cardiac performance.  Our present model, albeit a simple

one, introduces another concept, termed elastance, which may be a better

estimate of cardiac performance, but as we will see in later chapters, this also

has its limitations.

If we measure LVP, EDV, Vo and VEJ we can estimate the time varying elastance

of the myocardium surrounding the ventricle from the above equation.  If the

simple model is a good one we should be able to describe both isovolumic beats

and ejecting beats.

Let’s use a test set of data to examine the effectiveness of our model.  We’ll use

two cardiac loading conditions – ejecting and non-ejecting.  If our model is a
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good one, it should predict the cardiac behavior in both instances.  But why

would we use two loading conditions – specifically the non-ejecting beat?  You

may remember from basic circuits class that one way to characterize an energy

source such as a voltage or current source is to test it under open circuit (infinite

load resistance) and short circuit (zero load resistance) conditions.  We can

obtain the former condition easier in the intact cardiovascular system by

clamping the aorta (a non-ejecting beat).

Figure xx shows a time sequence of an ejecting beat followed by an isovolumic

beat.  Look closely at the isovolumic beat and you’ll see that it has a greater

amplitude and duration than the ejecting beat.

Figure 7-13
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Figure 7-14a
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Figure 7-14b
Figure xx illustrates this better by aligning the isovolumic phases of both beats.  If

the beat started from the the same EDV, the isovolumic phases should be the

same and deviation from the this similarity will end  at the time ejection begins.

This can be seen in figure xx.

Now let’s apply our model to this dataset. We’ll do this by calculating the

elastance from the isovolumic beat by the equation:

][
)(

o

ISO

VEDV
Pt

−
=ε

Vo  was estimated from an IVC occlusion experiment and was found to be 10 cc.

EDV was found by measurement to be 85 cc.  Thus we can calculate the

elastance waveform from these data (figure xx).  Using this elastance we can see
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if our model will predict LVP from the PisoNow let’s calculate the elastance for

the ejecting beat.  Here we’ll use the equation from our model:
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One can clearly see that the elastances calculated from the isovolumic and

ejecting data are different.  Perhaps, the elastance is altered in some way by the

process of ejection, or perhaps __________________________???

Figure 7-15
What is elastance?  Elastance can be mathematically defined, as we have

already seen in this chapter and we learned that it describes the relationship

between volumes and pressures in the heart.  Conceptually, however, elastance

is more complex.  It is an entity that represents a combination of temporal and

spatial averages of sarcomeric forces and their respective lines of action.  Each



7-16

sarcomere produces a force in a particular direction – that is, the sarcomeric

force is a vector with magnitude and direction.

  To explain, as the electrical depolarization signal propagates through the

myocardium, a biochemical sequence of events initiate that ultimately results in a

multitude of sarcomeric force vectors.   One can visualize this process as a

balloon whose skin is generating forces in different directions at slightly different

times.  Using this visualization, one can surmise that the conversion of the

instantaneous sarcomeric vectors into left ventricular pressure is going to

depend, in part, on the geometry of the balloon.  For example, assume that the

same force is generated by the sarcomeres in a small diameter balloon and in a

large diameter balloon.  Does this mean that the internal pressure generated

within the “ventricle” will be the same?  (need to insert a figure of sphere and

stress-strain (timenshenko). The answer is no and the reason can be seen

below.  Pressure is defined as force per unit area.

A
FP =
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Figure 7-16
Here let A = the inner surface area of a sphere.  As this gets larger we

need to produce a larger force F, normal to the surface area, A to maintain the

same pressure.  The force, F, perpendicular to surface A, comes from the

sarcomeric forces, Fs, which are tangential to surface A.  Everything being equal,

the larger the sphere, A becomes larger and the greater the force, F, we must

apply to obtain the same pressure.  However, everything doesn’t remain equal.

In fact, the greater the diameter of the sphere, the less sarcomeric force, Fs

(tangential to the surface A) is projected perpendicular to the surface area A,

resulting in even less pressure generated within the “ventricle” and it is this

perpendicular force that generates “ventricular” pressure.  I don’t know if this is

true.  Furthermore, if we obtain the larger diameter sphere by stretching the

ballon from a small diameter, we’ve created a larger initial tension (tangential

forces) that the sarcomeric force Fs must first overcome.  Offsetting this over
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small ranges of stretch is the fact that sarcomeric force, Fs, increases

dramatically with limited amounts of initial stretch.

  The bottom line here is that the conversion of myocardial sarcomeric

force vectors into internal ventricular pressure is dependent on many factors, one

of which is geometry, and it is internal ventricular pressure along with ventricular

volume that we measure and use to compute a quantity termed elastance.  Thus

elastance is not just a material property, but depends also on other factors.  The

significance of this to a cardiovascular engineer is that a low elastance does not

necessarily indicate a low sarcomeric force, which might indicate an ailing

myocardium.  Since elastance is also related to ventricular pressure, low

ventricular pressures do not necessarily indicate an ailing myocardium either.

We can now begin to formulate a picture of what really constitutes cardiac

function.  Can we evaluate cardiac function by looking at ventricular pressures

and outflows alone?  It appears that we cannot if we expect to gain a complete

picture of cardiac function.  Figure (XX) show a block diagram of the cardiac



7-19

pumping process from beginning to end.  The first block illustrates the electrical

to sarcomeric force conversion process and is termed excitation-contraction

coupling.  The next block shows that each sarcomeric force vector sums spatially

and temporally through a complex geometry shape to produce a bulk elastance.

This bulk elastance operates on a ventricular volume producing an “ideal”

ventricular pressure, but as shortening occurs, this ideal pressure is “degraded”

to left ventricular pressure by visco-elastic properties of the myocardium.  The

ventricular pressure is further degraded by viscous losses through the valve and

as this pressure interacts with the arterial load, a flow waveform results.  Thus

only measuring aortic pressure and flow sheds little light on the real culprit(s) of

degraded cardiac performance.

Does the elastance waveform’s amplitude and duration vary as a function

of volume (sarcomeric stretch)?  Initial evidence suggests that it does.  If this is,
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in fact, the case, many seeming discrepancies of the pressure volume loops can

be explained … (Add to this later with some data)


