ECE 761: Homework \#13: Jacobians and Cartesian Control

For a 2-link arm, assume the tip position is

$$
\mathrm{P} 2=(1.1,0.5)
$$

1) Determine the joint angles at this point
2) Determine the Jacobian at this point
3) Determine the joint velocities if the tip velocity is moving towards point 3 :

$$
\left[\begin{array}{c}
\dot{x}_{2} \\
\dot{y}_{2}
\end{array}\right]=\left[\begin{array}{c}
-0.5 \\
0
\end{array}\right] \mathrm{m} / \mathrm{s}
$$

4) Determine the tip velocity if the joint velocity is

$$
\left[\begin{array}{l}
\dot{\theta}_{1} \\
\dot{\theta}_{2}
\end{array}\right]=\left[\begin{array}{l}
0.1 \\
0.2
\end{array}\right] \mathrm{rad} / \mathrm{sec}
$$

Write a program (modify RR_XY_Control.txt) to trace out a square with corners at

- $\mathrm{P} 0=(0.1,-0.5) \quad \mathrm{t}=0$ seconds
- $\mathrm{P} 1=(1.1,-0.5) \quad \mathrm{t}=4$ seconds
- $\mathrm{P} 2=(1.1,+0.5) \quad \mathrm{t}=8$ seconds
- $\mathrm{P} 3=(0.1,0.5) \quad \mathrm{t}=12$ seconds
- $\mathrm{P} 4=\mathrm{P} 0=(0.1,-0.5) \quad \mathrm{t}=16$ seconds

5) Using cosine interpolation between points, and
6) Using no interpolation (step change: $\mathrm{a}=1$)
