ECE 761: Homework #15: Dynamics of a DC Servo Motor

The dynamics of a DC servo motor are

$$s\theta = \omega = \left(\frac{K_t}{(J_{s+D})(L_{s+R}) + K_t^2}\right) V_a$$

This gives five parameters to determine

1) Use a multimeter to measure the armature resistance and inductance

Ra	La
Ohms	Henries

2) Apply 10V DC to the DC servo motor and measure the current draw and the speed. From this, determine Kt

$$V_a = I_a R_a + K_t \omega$$

Va Volts	Ia Amps	W rad / sec	Kt Vs / rad

- 3) Apply a +10V DC step input to the motor and measure the step response.
 - From the step response, determine a 1st-order approximation for the motor.
 - Using this 1st-order approximation, determine J and D

$$\mathbf{\omega} \approx \left(\frac{K_t}{(Js+D)(R)+K_t^2}\right) V_a = \left(\frac{\left(\frac{K_t}{JR}\right)}{s+\left(\frac{DR+K_t^2}{JR}\right)}\right) = \left(\frac{a}{s+b}\right) V_a$$

1st-Order Approximation	J kg m2	D Nms / rad