Matlab Review

Becoming familiar with MATLAB

- The console
- The editor
- The graphics windows
- The help menu
- Saving your data (diary)

General environment and the console

Simple numerical calculations

```
>> x = 17/3
    5.6667
>> y = (3+4)*5
```

35

Particular numbers

```
>> e = exp(1)
    2.7183
>> pi
```

3.1416
>> i

```
            0 + 1.0000i
```

>> j
$0+1.0000 i$

Do and don't display results

```
>> x = 2*pi
    6.2832
>> x = 2*pi;
```

Displaying number of decimal places

```
>> format short
>> pi
    3.1416
>> format long
>> pi
    3.141592653589793
>> format longe
>> pi^30
    8.212893304027486e+014
>> format shorteng
>> pi^30
    821.2893e+012
```


Matrices

 [start of matrix
] end of matrix
 , next element
 ; next row
$\gg A=[1,2,3]$
133
$\gg B=[1,2,3 ; 4,5,6]$
132
$\begin{array}{lll}4 & 5 & 6\end{array}$
$>C=A^{\prime}$
1
2
3

```
>> D = zeros(1,3)
```

$0 \quad 0 \quad 0$

Random Numbers: Uniform distribution from $(0,1)$

```
>> rand (2,4)
\begin{tabular}{llll}
0.8147 & 0.1270 & 0.6324 & 0.2785 \\
0.9058 & 0.9134 & 0.0975 & 0.5469
\end{tabular}
```

Normal distrubution: $\mathrm{N}(0,1)$

```
>> randn (2,4)
    3.5784 -1.3499 0.7254 0.7147
    2.7694 3.0349 -0.0631 -0.2050
```

for loops:

```
>> x = zeros(1,5);
>> for i=1:5
    x(i) = i*i;
        end
>> x
x =
    1 4
while
if
if else end
```

Example: Roll five 6-sided dice

```
>> x = [1:5]
    1 
>> rand (1,5)
    0.7298 0.8908 0.9823 0.7690 0.5814
>> dice = ceil( 6*rand(1,5) )
    3
>> dice = ceil( 6*rand(1,5) )
    1 
>> sum( ceil( 6*rand(1,5) ) )
    8
>> sum( ceil( 6*rand(1,5) ) )
```

16
Roll 5 d 6 one-hundred times and record how many rolls you get for each total:

```
>> X = zeros(30,1);
>> for i=1:100
    D = sum( ceil( 6*rand(1,5) ) );
    X(D) = X(D) + 1;
    end
>> bar(X)
>> >> xlabel('Die Total');
>> ylabel('Frequency');
>> title('100 die rolls')
```


Result from rolling 5 d 6100 times

Roll 5d6 10,000 times and record the frequency of each outcome:

```
>> X = zeros(30,1);
> for i=1:10000
    D = sum( ceil( 6*rand(1,5) ) );
    X(D) = X(D) + 1;
    end
>> bar(X)
>> xlabel('Die Total');
>> ylabel('Frequency');
>> title('10000 die rolls')
```


Result of rolling 5d6 10,000 times

Numerical Integration:

Simplest (and least accurate) is Euler integration

$$
\text { Area }=\text { Width } * \text { height }
$$

Example: Determine how much energy a 1.5 m 2 solar panel will generate in Fargo, ND over the past two weeks. Assume the efficiency of the solar panel is 20%

Solution: Get solar data from NDAWN:

https://ndawn.ndsu.nodak.edu/

Select Weather Data - Hourly - Fargo - Solar Total

Export to a CVS file and copy the data to the clip board. From Matlab

```
>> Sun = [
        paste in the data
    ];
>> size(Sun)
    336 1
>> h = [1:336]';
>> plot(h,Sun);
>> xlabel('Hour')
>> ylabel('MJ/m2')
>>
```


Solar Radiation in Fargo for the last two weeks

This is hourly data. To convert to Joules, integrate

```
        height =data * 1,000,000 (MJ total over an hour)
        width = 1 hour
    Area = Width * height = Joules
>>MJ = sum(Sun)
MJ =
    280.2130
```

To convert that to kWh
$1 M J=0.2778 \mathrm{kWh}$
>> kWh $=\mathrm{MJ} * 0.2778$
$\mathrm{kWh}=$
77.8432

At 20% efficiency, a solar panel would generate 15.5 kWh over this 2 week span. This is worth about $\$ 1.55$

```
>> kWh * 0.2
```

15.5686

Bouncing Ball

$x=0$;
$y=1 ;$
$d x=1 ;$
$d y=0 ;$
$d d x=0 ;$
$d d y=0 ;$
$d t=0.01 ;$
for $i=1: 1000$
ddy $=-9.8 ;$
$d x=d x+d d x * d t ;$
$d y=d y+d d y * d t ;$
$x=x+d x * d t ;$
$y=y+d y * d t ;$
if (x > 1)
$d x=-a b s(d x) ;$ end
if ($\mathrm{x}<-1$)
$d x=a b s(d x) ;$ end
if ($\mathrm{y}<-1$)

$$
\begin{aligned}
& d y=a b s(d y) ; \\
& \text { end }
\end{aligned}
$$

hold off
plot([-1,1], [-1,1],'.');
hold on
plot (x,y,'o')
pause(0.01);
end

Bouncing Ball

Vectors, Dot Products, and Cross Products

Vectors

Vectors in 3 -space are represented with a 4×1 matrix:

$$
v=\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]
$$

The point in 3-space is $[\mathrm{x}, \mathrm{y}, \mathrm{z}]^{\prime}$.
Zoom is the scaling factor:

- 0 vector at infinity (the size of the image is zero when you're infinitely far away)
- 1 scale $=1$ (normal scaling)
- 2 Zoom in 2 x

Magnitude

The magnitude of a vector is

$$
|a|=\left|\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}
$$

Dot product

A dot producto is a scalar: the length of vector a projected on vector b

$$
a \cdot b=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}
$$

Cross Product

A cross product is a vector

- The direction is perpindiculat to vector a and b
- The magnitude is a measure of how orthogonal the vector are

$$
a \times b=\left[\begin{array}{c}
a_{x} \\
a_{y} \\
a_{z}
\end{array}\right] \times\left[\begin{array}{c}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left|\begin{array}{ccc}
i_{x} & i_{y} & i_{z} \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right|
$$

$$
a \times b=\left[\begin{array}{l}
a_{y} b_{z}-a_{z} b_{y} \\
a_{z} b_{x}-a_{x} b_{z} \\
a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]
$$

Planes

A plane is a row vector

$$
\mathrm{P}=[\mathrm{px}, \mathrm{py}, \mathrm{pz}, \mathrm{pw}]
$$

The dot product of a plane and a point is the distance from the plane to the point. A dot-product of zero means the point is on the plane.

A positive dot-product indicates you're above the plane, a negative dot-product indicates the point is below the plane.

Transformation Matricies

A transform matrix is a way to

- Shift a point by the vector ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
- Rotate the coordinate frame, and
- Zoom in and out with a scaling factor of w.

Since each point is defined by a 4 x 1 vector, the transformation matrix needs to be a 4×4 matrix:

$$
a_{4 x 1}=T_{4 x 4} b_{4 x 1}
$$

T is composed of three parts:

- A 3×3 rotation matrix (identity in this example)
- A 3x1 translation matrix ([bx, by, bz]T)
- A 1×1 scalar (w) defining the zoom in / zoom out factor.

$$
\left[\begin{array}{c}
a_{x} \\
a_{y} \\
a_{z} \\
\cdots \\
a_{w}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & \vdots & x \\
0 & 1 & 0 & \vdots & y \\
0 & 0 & 1 & \vdots & z \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \vdots & w
\end{array}\right]\left[\begin{array}{c}
b_{x} \\
b_{y} \\
b_{z} \\
\cdots \\
b_{w}
\end{array}\right]
$$

Example 1: Shift the point $[1,2,3]$ by $[x, y, z]$ Use a scaling factor of one $(w=1)$.

$$
\begin{aligned}
& b=\left[\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right] \\
& a=\left[\begin{array}{llll}
1 & 0 & 0 & x \\
0 & 1 & 0 & y \\
0 & 0 & 1 & z \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
1+x \\
2+y \\
3+z \\
1
\end{array}\right]
\end{aligned}
$$

Point b has been shifted by $[\mathrm{x}, \mathrm{y}, \mathrm{z}]$.

Zoom in with a scaling factor of 2

$$
a=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
2
\end{array}\right]
$$

This means if you plot the point ($1,2,3$), it will be doubled (zoomed in with a factor of 2)

Matlab Commands

Analysis

- $\operatorname{sqrt}(x)$ square root of x
- $\log (\mathrm{x}) \quad \log$ base e
- $\log 10(x) \log$ base 10
- $\exp (\mathrm{x}) \mathrm{e}^{\wedge} \mathrm{x}$
- $\exp 10(x) \quad 10^{\wedge} \mathrm{x}$
- abs(x) $|x|$
- round(x)round to the nearest integer
- floor(x) round down (integer value of x)
- ceil(x) round up to the next integer
- real(x) real part of a complex number
- $\quad \operatorname{imag}(x)$ imaginary part of a complex number
- $\operatorname{abs}(x)$ absolute value of x, magnitude of a complex number
- angle(x) angle of a complex number (answer in radians)
- unwrap(x) remove the discontinuity at pi (180 degrees) for a vector of angles

Polynomials

- poly(x)
- roots(x)
- $\operatorname{conv}(x, y)$

Trig Functions

- $\sin (x) \quad \sin (x)$ where x is in radians
- $\cos (x) \cos ()$
- $\tan (x) \tan ()$
- $\operatorname{asin}(x) \arcsin (x)$
- $\operatorname{acos}(x) \arccos (x)$
- $\operatorname{atan}(x) \arctan (x)$
- $\operatorname{atan} 2(y, x) \quad$ angle to a point (x, y)

Probability and Statistics

- factorial(x)

```
(x-1)!
```

- gamma(x)
- $\quad \operatorname{rand}(n, m)$ x !
- \quad randn (n, m) create an nxm matrix of random numbers between 0 and 1
- $\operatorname{sum}(x)$ sum the columns of x
- $\operatorname{prod}(x)$ multiply the columns of x
- $\operatorname{sort}(x)$ sort the columns of x from smallest to largest
- length(x) return the dimensions of x
- mean (x) mean (average) of the columns of x
- $\operatorname{std}() \quad$ standard deviation of the columns of x

Display Functions

- plot(x) plot x vs sample number
- plot(x, y) plot x vs. y
- $\operatorname{semilog} x(x, y) \quad \log (x)$ vs y
- $\operatorname{semilogy}(x, y) \quad x$ vs $\log (y)$
- $\log \log (\mathrm{x}, \mathrm{y}) \quad \log (\mathrm{x})$ vs $\log (\mathrm{y})$
- mesh(x) 3d plot where the height is the value at $x(a, b)$
- contour(x) contour plot
- $\operatorname{bar}(x, y)$ draw a bar graph
- xlabel('time') label the x axis with the word 'time'
- ylabel() label the y axis
- title() put a title on the plot
- grid() draw the grid lines

Useful Commands

- hold on don't erase the current graph
- hold off do erase the current graph
- diary create a text file to save whatever goes to the screen
- linepace $(a, b, n) \quad$ create a $1 x n$ array starting at a, increment by b
- logspace $(a, b, n) \quad$ create a $1 x n$ array starting at 10^{\wedge} a going to $10^{\wedge} \mathrm{b}$, spaced logarithmically
- subplot() create several plots on the same screen
- disp('hello') display the message hello

Utilities

- format set the display format
- zeros(n, m) create an nxm matrix of zeros
- eye (n, m) create an nxm matrix with ones on the diagonal
- ones(n, m) create an nxm matrix of ones
- help help using different functions
- pause(x) pause x seconds (can be a fraction). Show the graph as well
- clock the present time
- etime the difference between to times
- tic start a stopwatch
- toc the number of seconds since tic

