HP35s - $f(x)=0$

Note: If you would like to try using an HP calculator, you can download a free app on your cell phone

- Android: Free42.
- Apple: ComplexRPN A generic RPN calculator which does complex numbers

Newton's Method

Newton's method is a way to find the zero of a function. The method is

- First, guess x.
- Find the derivative at x.
- Use the derivative to estimate the zero crossing as

$$
x_{1}=x_{0}-\left(\frac{d x}{d y}\right)_{x=x_{0}} \cdot y\left(x_{0}\right)
$$

- If $y(x 1)$ isn't small enough, repeat

Newton's Method: Use the derivative to estimate the zero crosing.

HP42s Program

Memory Location: $X=$ current guess, $Y=f(x)$
Program:

- $Z=$ find the zero of a funciton
- $\mathrm{F}=$ function

Code:

PRGM	+	XEQ F001
LBL Z	XEQ F001	ABS
VIEW X	RCL Y	$1 E-4$
PSE	-	X<Y?
RCL X	$1 / X$	GTO Z001
XEQ F001	0.001	RCL X
STO Y	X	STOP
RCL X	RCL Y	PRGM
0.001	X	
+	$+/-$	
XEQ F001	RCL X	
RCL Y	+	
-	STO X	
$1 / X$		
0.001		

Using $\mathrm{f}(\mathrm{x})=0$

Example 1: Find the square root of two

$$
x=\sqrt{2}
$$

Change this to $\mathrm{f}(\mathrm{x})=0$

$$
y=x^{2}-2
$$

Program this into program F. Your guess is passed in the x-register PRGM
LBL F X^{2} 2

RTN
PRGM

Place your initial guess into the X register.
10
STO X

Execute the program Z
XEQ Z000

You'll see several numbers appear as it iterates to find the solution. After a few tries, the result is 1.414

Example 2: Find the current through a diode

$$
\begin{aligned}
& V_{d}=0.052 \ln \left(\frac{I_{d}}{10^{-8}}+1\right) \\
& V_{d}+100 I_{d}=10 \mathrm{~V}
\end{aligned}
$$

Solution: Rewrite this as $\mathrm{f}(\mathrm{x})=0$. Assume your initial guess is Id in mA . Solve two equations

$$
\begin{aligned}
& V_{d 1}=0.052 \ln \left(\frac{I_{d}}{10^{-8}}+1\right) \\
& V_{d 2}=10 V-100 I_{d}
\end{aligned}
$$

The error is the difference

$$
e=V_{d 1}-V_{d 2}
$$

Program this into the HP35s
GTO F000
PRGM
1000
/
STO I I is now in amps
1E-8
/
1
$+$
LN
0.052
x
STO V
10
RCL I
100
X
RCL V
-
RTN
PRGM

Now start with an initial guess (1mA)
1
STO X
XEQ Z000

You will see the display change as the $f(x)=0$ function iterates to find the solution. Eventually you get
91.664

$$
I=91.664 \mathrm{~mA}
$$

To check your answer, plug this into function F
XEQ F000
$-5.840 \mathrm{E}-9$
$f(x)=-0.00000000584 \quad$ (almost zero)

