HP35s - RPN \& Stacks

Note: If you would like to try using an HP calculator, you can download a free app on your cell phone

- Android: Free42.

HP42s calculator (almost identical to an HP35s but out of production)

- Apple: ComplexRPN

A generic RPN calculator which does complex numbers

Stacks

The HP35s uses makes extensive use of stacks. There are four registers in the stack

- T top of stack
- Z
- Y top row of display
- X bottom of stack and bottom row of display

When you type in a number, it goes into the X register

push (enter)

The enter key is a "push" command. This pushes data up one on the stack. Note that the contents of T are lost.

Result of an Enter command (push)
The X register remains unchanged. If enter a number, it clears the X register and replaces it with the number your typing.
$\operatorname{Pop}(R \downarrow)$:
Rotate modes all data down one with the X register going to the T register

Result of a rotate down command ($R \downarrow$)

Swap X and $Y(X \underset{\leftarrow}{\rightleftarrows})$

This just swaps the contents of the X and Y register

Result of a Swap X and Y command

RPN: Reverse Polish Notation

All operations operate on the X and Y register. Likewise, you need to set up the stack before you press the + , -, *, or other functions.

t
t
z
$y^{* *} x$
after $a *$ operation

t
t
z
y / x
after a/operation

Note that the t-register remains unchanged. This lets you quickly find all multiples of N or products of N .
Example: Find all multiples of seven.
Solution: Push 7 onto the stack
7
Enter
Enter
Enter
Now hit the + button over and over again. This results in you adding 7 to the X register over and over.

ATA

7
7
7
21
second +

7
7
7
28
third +

7
7
7
35
th +

Example 2: Suppose you invest $\$ 1000$ at 5\% interest. How much do you have each year?
Solution: Push 1.05 (5\% interest) onto the stack. When done, input 1000 into the X register.

$$
\begin{aligned}
& 1.05 \\
& \text { Enter } \\
& \text { Enter } \\
& \text { Enter } \\
& 1000
\end{aligned}
$$

Now hit the multiply (x) button over and over

T	1.05
\mathbf{Z}	1.05
	1.05
	1000
	before

1.05
1.05
1.05
1102.50
second x

1.05
1.05
1.05
1157.625
third x

1.05
1.05
1.05
1215.506
$4 \operatorname{th} x$

Sample Problems

Problem 1. Assume $\mathrm{X}=3$. Solve for Y :

$$
Y(x)=\left(\frac{10(x+2)(x+20)}{x(x+15)}\right)
$$

Solution:

```
3
STO X
2
+
RCL X
20
+
x
10
x
RCL X
/
RCL X
```

```
15
+
/
```

answer $=21.2963$

Problem 2: Find the net resistance from A to B

Start from the right and start simplifying 300 and 350 are in series (they add) this is in parallel with 250 (they add as the sum of the inverses inverted)

```
350
Enter
300
+ x = 650 300 and 350 Ohms in series
1/X
250
1/X
+
1/X 650 || 250 = 180.5556
200
+ inseries with 200 Ohms = 380.5556
1/X
150
1/X
+
1/X in paralel with 150 Ohms = 107.5916
100
+
    in series with 100 Ohms = 207.5916
```

Answer: 207.5916 Ohms

