Complex Numbers

Complex Numbers, RPN Calculators (Free42, DM42, HP-Prime)

ECE 111 Introduction to ECE Week #12

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Topics

- Complex Numbers
- Complex Numbers on an RPN Calculator
 - Free42 (*free* HP42 app for your cell phone)
 - DM42 Calculator (\$324 on Amazon)
 - HP Prime (\$129 on Amazon)

Objectives

- Be able to add & subtract complex numbers
- Be able to multiply and divide complex numbers
- Be able to switch between rectangular and polar representation for complex numbers
- Be able to do partial fraction expansion with complex numbers

Introduction

Numbers matter.

- Numbers make a difference.
- The existence of mathematical oddities can determine the fate of empires.

The Number Zero:

Why have the number zero?

- Not necessary
- Rome ran a vast empire without the number zero

Roman Numbers:

Romans represented numbers with letters:

- I = 1
- V = 5
- X = 10
- L = 50
- C = 100
- IX = 9 (10 1)
- XC = 90 (100 10)

Example:

- 27 = XXVII
- 109 = CIX

Addition, Subtration, Multiplication, & Division

Totally possible with Roman numbers

- Rome ran a vast empire
- You know that addition, subtration, multiplication, and division happened

It's not easy with Roman numbers

Addition	Multiplication			
XXVII	XXVII			
+ CIX	* CIX			
= ?	= ?			

Arabic Numbers

In contrast, the Arabic number system uses place holders

- Each digit represents an increasing power of ten
- With this number system, you *need* the number zero.

Example:

```
106 = 1 \ge 100 + 0 \ge 10 + 6 \ge 1
```

106 is very different than 16.

With Arabic numbers,

- Addition and subtraction become much easier
- Multiplication and division remains a challenge
- But it is far easier than with Roman numbers.

Negative Numbers:

Why have negative numbers?

- What does negative one apple mean?
- Why allow this to be represented?

Negative numbers are not necessary

• They do make some calculations easier, however.

Example: Voltage Nodes

- The sum of the current from a node must be zero
- If you don't mind negative numbers, you don't need to know which direction the current is flowing before you write the equations

-1 ???

Accounting & Double-Entry Bookkeeping System

Florence was a world power in the 13th century.

- A remarkable feat considering that Florence is a small city in Italy
- Competing against much larger countries such as Spain, France, and England.

Republic of Florence: a small city state competing for European dominance (Wikipedia)

Importance of Negative Numbers

One reason for this was the invention of the double-entry bookkeeping system.

- Keep track of debits (negative profit)
- Keep track of credits (positive profit)
- Credits minus debits = profit

Description	Debits	Credits
Ropes	\$283	
Salami	\$117	
Sale of Flowers		\$183
Salt	\$45	
Sale of Wine		\$215

With this, Florentine merchants could keep track of which ventures were profitable and which were not.

- Everyone else just looked at the return at the end of a venture
- Ignoring how much money you sunk into it over the course of time

"We will bury you"

• Nikita Khrushchev

Accounting can decide the fate of empires

In the 1960's, the Soviet Union *thought* their economy was growing 20% per year

• vs. 4% for the United States

At that rate, by 2000 the Soviet Union would crush the U.S. ecomomically

• Exponential growth is a powerful thing...

Actually, the Soviet economy was shrinking 1-2% per year

Eventually, the size of the goverment (based upon 20% growth) could not be supportedAccounting & Empires

Accounting can determine the fate of empires

Complex Numbers:

Real numbers work well for DC circuits

- 1st half of EE 206 Circuits I
- Voltages can be expressed by a real number
- Currents can be expressed with real numbers, and
- Resistance's can be expressed with real numbers.

Real numbers have problems when working with AC circuits

- 2nd half of EE 206 Circuits I
- Rest of ECE curriculum

With AC signals, you have two terms:

- sin(wt)
- $\cos(wt)$

You likewise need two numbers to represent any given voltage or current when dealing with AC signals

sin(t) and cos(t). Note that the period is 2 pi

A generalized sine wave can be represented as

 $x(t) = a\cos(\omega t) + b\sin(\omega t)$

or

$$x(t) = r\cos\left(\omega t + \theta\right)$$

(more on this later).

What this means is, unlike DC, you need three parameters to define a sinusoid:

- The frequency (w), and
- The cosine and sine terms (a, and b), or
- The amplitude and phase shift (r and θ)

Frequency isn't a problem:

- If you have a linear circuit,
- The frequency doesn't change
- All signals will be the same frequency as the input.

Voltage and current are a problem

- You need a way to represent two parameters:
 - The magnitude of the sine() and cosine() terms in rectangular form, or
 - The amplitude and angle in polar form

Complex numbers provide you with those two degrees of freedom

- Any time you're working with DC signals, real numbers suffice
- Any time you're working with AC signals, complex numbers are used

In short, ECE majors use complex numbers - probably more than any other major.

Fortunately, Matlab (and HP calculators) have no problem working with complex numbers.

Free42 is a free app for your cell phone

- It emulates the HP42 calculator
- The *best* calculator ever made for ECE majors
- Deals with complex numbers with ease
- Worth about 10 points on midterms in ECE
- DM42 is a physical version (\$324 on Amazon)
- HP Prime is another version (\$124 on Amazon)
- Bison42 is another version (\$20 available Su25)

It has a learning curve though

• Don't try to learn how to use an HP during a midterm

Complex Numbers

Unlike real numbers, complex numbers have two terms. This allows us to represent the cosine and sine terms for a sinusoid with a single (albeit complex) number.

The basic idea behind complex numbers is to define a term, j, as¹

 $j \equiv \sqrt{-1}$

Any given number can then have a real and a complex part

x = a + jb

You can express this number in rectangular form (a + jb) or polar form

 $x = c \angle \theta$

Math majors call this term i for imaginary. In ECE, i means current, so we use the letter j to represent the complex part of a number.

Note: The polar form is shorthand notation and actually means $c \angle \theta \equiv c \cdot e^{j\theta}$

The complex exponential has two terms $e^{j\theta} = \cos(\theta) + j\sin(\theta)$

This leads to Euler's identity

$$\cos \theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$
$$\sin \theta = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

Proof: Substitute for the complex exponential

$$\left(\frac{e^{j\theta}+e^{-j\theta}}{2}\right) = \frac{1}{2}((\cos\theta+j\sin\theta)+(\cos(-\theta)+j\sin(-\theta)))$$

Using some trig identities

$$\cos(-\theta) = \cos \theta$$

$$\sin(-\theta) = -\sin \theta$$

gives

$$= \left(\frac{1}{2}\right)(\cos \theta + j\sin \theta + \cos \theta - j\sin \theta)$$

$$= \frac{1}{2}(2\cos \theta)$$

$$= \cos \theta$$

The proof for sin(x) is similar

Inputting Complex Numbers into Matlab

With Matlab, the default value of j is $\sqrt{-1}$.

If you redefine j, this no longer holds, but you can restore this as >> j = sqrt(-1)

To input a number into Matlab in rectangular form, simply use the j variable

You can also input a variable in polar form. $B = 3 \angle 1.5$ is input as

```
>> B = 3 * \exp(j*1.5)
```

B = 0.2122 + 2.9925i

(note: Matlab uses radians for its angle units).

The default display in Matlab is rectangular units.

- To convert to polar, use the abs and angle
- Angle will be in radians

>> c = abs(B)

с = 3

>> angle(B)

ans = 1.5000

Inputting Complex Numbers into an HP42

This uses the complex key. In rectangular mode (yellow - MODES - RECT)

- the y register becomes the real part
- the x register becomes the complex part.

To input the number 2 + j3, press

```
MODES
RECT
2
enter
3
complex
```

In polar mode (yellow - MODES - POLAR)

- the y register becomes the magnitude
- the x register becomes the angle (in the current units degrees / rad / grad)

To input the number $5 \angle 27^0$	🗣 Free42 Decimal — 🗆 🗙
MODES	File Edit Skin Help
POLAR	
5	(1) PACKARD
enter 27	425 RPN SCIENTIFIC
complex	₩ 5 0000 /27 0000
	$\begin{array}{cccc} \Sigma - & y^{x} & x^{2} & 10^{x} & e^{x} & \text{GTO} \\ \Sigma + & 1/x & \sqrt{x} & \text{LOG} & \text{LN} & \text{XEQ} \end{array}$
	COMPLEX % IT ASIN ACOS ATAN
	ALPHA LAST & MODES DISP CLEAR
	BST SOLVER J N(x) MATRIX STAT
	SST BASE CONVERT FLAGS PROB
	ASSIGN CUSTOM PGM.FCN PRINT
	OFF TOP.FCN SHOW PRGM CATALOG

Addition, Subtraction, Multiplication, and Division

With complex numbers, you can add, subtract, multiply, and divide just like real numbers:

Addition: For addition

- The real parts add, and
- The complex parts add.

Example:

$$(a_1 + jb_1) + (a_2 + jb_2) = (a_1 + a_2) + j(b_1 + b_2)$$

Subtraction: Again, the real parts subtract and the complex parts subtract

 $(a_1 + jb_1) - (a_2 + jb_2) = (a_1 - a_2) + j(b_1 - b_2)$

Note: Addition and subtraction also work in polar form.

• This requires a polar to rectangular conversion:

$$r_1 \angle \theta_1 + r_2 \angle \theta_2 = (r_1 \cos \theta_1) + j(r_1 \sin \theta_1) + (r_2 \cos \theta_2) + j(r_2 \sin \theta_2)$$
$$= (r_1 \cos \theta_1 + r_2 \cos \theta_2) + j(r_1 \sin \theta_1 + r_2 \sin \theta_2)$$

Moral: Addition and subtraction is easier in rectangular form. Or use a calculator that can add and subtract complex numbers.

Multiplication: Multiplication is a little trickier

 $(a_1 + jb_1)(a_2 + jb_2) = a_1a_2 + ja_1b_2 + ja_2b_1 + j^2b_1b_2$

Note that $j^2 = -1$ $(a_1 + jb_1)(a_2 + jb_2) = (a_1a_2 - b_1b_2) + j(a_1b_2 + a_2b_1)$

Result: Complex * Complex = Complex

Polar form actually works better for multiplication

$$r_1 \angle \theta_1 \cdot r_2 \angle \theta_2 = r_1 e^{j\theta_1} \cdot r_2 e^{j\theta_2}$$
$$= r_1 r_2 e^{j\theta_1} e^{j\theta_2}$$

Using the property

$$e^a e^b = e^{a+b}$$

gives

$$r_1 \angle \theta_1 \cdot r_2 \angle \theta_2 = r_1 r_2 e^{j\theta_1 + j\theta_2}$$
$$r_1 \angle \theta_1 \cdot r_2 \angle \theta_2 = r_1 r_2 \angle (\theta_1 + \theta_2)$$

When you multiply complex numbers

- The magnitude multiplies and
- The angles add

Complex Conjugate: The complex conjugate of a complex number is

$$(a+jb)^* \equiv a-jb$$

The complex conjugate has the property that the product of a complex number with its complex conjugate is a real number, equal to the magnitude squared:

$$(a+jb) \cdot (a-jb) = a^2 + b^2$$

Division: Division also results in a complex number but takes even more computations. It uses the complex conjugate of the denominator:

$$\begin{pmatrix} \frac{a_1+jb_1}{a_2+jb_2} \end{pmatrix} = \begin{pmatrix} \frac{a_1+jb_1}{a_2+jb_2} \end{pmatrix} \begin{pmatrix} \frac{a_2-jb_2}{a_2-jb_2} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{(a_1a_2+b_1b_2)+j(-a_1b_2+a_2b_1)}{a_2^2+b_2^2} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{a_1a_2+b_1b_2}{a_2^2+b_2^2} \end{pmatrix} + j \begin{pmatrix} \frac{-a_1b_2+a_2b_1}{a_2^2+b_2^2} \end{pmatrix}$$

Polar form is again simpler for division

$$\begin{pmatrix} \frac{r_1 \angle \theta_1}{r_2 \angle \theta_2} \end{pmatrix} = \begin{pmatrix} \frac{r_1 e^{j\theta_1}}{r_2 e^{j\theta_2}} \end{pmatrix}$$
$$= \begin{pmatrix} \frac{r_1}{r_2} \end{pmatrix} e^{j\theta_1} e^{-j\theta_2}$$
$$= \begin{pmatrix} \frac{r_1}{r_2} \end{pmatrix} e^{j\theta_1 - k\theta_2}$$
$$= \begin{pmatrix} \frac{r_1}{r_2} \end{pmatrix} \angle (\theta_1 - \theta_2)$$

The division of complex numbers is

- The ratio of the magnitudes and
- The difference in the angles.

Handout: Solve the following problems

Determine the result of the following operations with complex numbers

Sample Problems

Problem 1: Find y $y = \left(\frac{(2+j3)(4+j5)+(6+j7)}{8+j9}\right)$

By Hand: (pretty painful)

$$y = \left(\frac{(2+j3)(4+j5)+(6+j7)}{8+j9}\right)$$

$$= \left(\frac{((8-15)+j(12+10))+(6+j7)}{(8+j9)}\right)$$

$$= \left(\frac{(-7+j22)+(6+j7)}{(8+j9)}\right)$$

$$= \left(\frac{-1+j29}{8+j9}\right)\left(\frac{8-j9}{8-j9}\right)$$

$$= \left(\frac{(-8+261)+j(232+9)}{64+81}\right)$$

$$= \left(\frac{253+j241}{145}\right)$$

$$= \left(\frac{253}{145}\right) + j\left(\frac{241}{145}\right)$$

$$= 1.7448 + j1.6621$$

Using Matlab

$$y = \left(\frac{(2+j3)(4+j5)+(6+j7)}{8+j9}\right)$$

>> y = (
$$(2+j*3)*(4+j*5) + (6+j*7)$$
) / $(8 + j*9)$

y = 1.7448 + 1.6621i

Using an HP42 $\left(\frac{(2+j3)(4+j5)+(6+j7)}{8+j9}\right)$ *y* = 2 enter 3 complex 4 enter 6 complex * 6 enter 7 complex +8 enter 9 complex ans = 1.7448 + j1.6621

Free42 Decimal		100		×
File Edit Skin Help				
HEWLETT PACKARD				
425	RP	N SCIE	NTIFIC	;
Y: 0.0000 X: 1.7448 i	1.662	21		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10* LOG	e* LN	GT	0 Q
COMPLEX % Π STO RCL R+	ASIN	ACOS COS	TA	N
ALPHA LAST : ENTER 🗴 کې	MODES	DISP		AR
BST SOLVER	8	MATRIX 9	STAT	
SST BASE CC		FLAGS		5
ASSIGN CL	2	GM.FCN	PRIN	5
OFF TOP.FCN S	• (PRGM R/S		og
Notice and the second second				WITER A

Partial Fraction Expansion with Real Poles

A common problem in ECE is to expand a function by its roots. For example, find

$$\left(\frac{2x+3}{(x+1)(x+2)(x+3)}\right) = \left(\frac{a}{x+1}\right) + \left(\frac{b}{x+2}\right) + \left(\frac{c}{x+3}\right)$$

Solution #1: (the hard way) Place the right side over a common denominator and match coefficients.

$$= \left(\frac{a}{x+1}\right) \left(\frac{(x+2)(x+3)}{(x+2)(x+3)}\right) + \left(\frac{b}{x+2}\right) \left(\frac{(x+1)(x+3)}{(x+1)(x+3)}\right) + \left(\frac{c}{x+3}\right) \left(\frac{(x+1)(x+2)}{(x+1)(x+2)}\right)$$

This places all terms over a common denominator. The numerator is then

$$2x + 3 = a(x + 2)(x + 3) + b(x + 1)(x + 3) + c(x + 1)(x + 2)$$

$$2x + 3 = a(x^{2} + 5x + 6) + b(x^{2} + 4x + 3) + c(x^{2} + 3x + 2)$$

This gives three equations for three unknowns.

Matching the x^2 terms:

$$0 = a + b + c$$

x¹ terms:

2 = 5a + 4b + 3c

x⁰ terms:

3 = 6a + 3b + 2c

Place in matrix form

$$\begin{bmatrix} 1 & 1 & 1 \\ 5 & 4 & 3 \\ 6 & 3 & 2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$$

Solve in Matlab

>> inv(A)*B

- a 0.5000
- b 1.0000
- c -1.5000

SO

$$\left(\frac{2x+3}{(x+1)(x+2)(x+3)}\right) = \left(\frac{0.5}{x+1}\right) + \left(\frac{1}{x+2}\right) + \left(\frac{-1.5}{x+3}\right)$$

Solution #2: (cover-up method).

Equals is a powerful symbol: it means both sides are identical everywhere.

• The right side blows up (goes to infinity) near $x = \{-1, -2, -3\}$. The left side has to match.

Near x = -1, only the first term matters since it's going to infinity while the other terms are finite. So

$$\lim_{x \to -1} \left(\frac{2x+3}{(x+1)(x+2)(x+3)} \right) = \lim_{x \to -1} \left(\frac{a}{x+1} \right)$$

Cancel (cover up) the (x+1) term and evaluate

$$a = \left(\frac{2x+3}{(x+2)(x+3)}\right)_{x=-1} = 0.5$$

Near x = -2, only the second term (b) matters on the right.

$$\lim_{x \to -2} \left(\frac{2x+3}{(x+1)(x+2)(x+3)} \right) = \lim_{x \to -2} \left(\frac{b}{x+2} \right)$$

Cancel (cover up) the (x+1) term and evaluate

$$b = \left(\frac{2x+3}{(x+1)(x+3)}\right)_{x=-2} = 1$$

Near x = -3, only the third term (c) matters:

$$\lim_{x \to -3} \left(\frac{2x+3}{(x+1)(x+2)(x+3)} \right) = \lim_{x \to -3} \left(\frac{c}{x+3} \right)$$
$$c = \left(\frac{2x+3}{(x+1)(x+2)} \right)_{x=-3} = -1.5$$

Either method works - the cover-up method is a lot easier.

The cover-up method also works in Matlab.

- Take a number close to the point you're evaluating (perturb by 1e-9)
- Solve for {a, b, c}

>> x = -1 + 1e-9;>> a = (2*x + 3)/((x+1)*(x+2)*(x+3)) * (x+1) a = 0.5000>> x = -2 + 1e-9;>> b = (2*x + 3)/((x+1)*(x+2)*(x+3)) * (x+2) b = 1.0000>> x = -3 + 1e-9;>> c = (2*x + 3)/((x+1)*(x+2)*(x+3)) * (x+3)c = -1.5000

Handout: Find the partial fraction expansion

$$\left(\frac{10(x+2)}{(x+5)x(x+10)}\right) = \left(\frac{a}{x+5}\right) + \left(\frac{b}{x}\right) + \left(\frac{c}{x+10}\right)$$

Partial Fraction with Complex Numbers

Placing all terms over a common denominator works, but is that much harder with complex numbers. The cover-up method is the same either way.

Example: Determine {a, b, c}

$$\left(\frac{5x+7}{(x+1+j3)(x+1-j3)(x+5)}\right) = \left(\frac{a}{x+1+j3}\right) + \left(\frac{b}{x+1-j3}\right) + \left(\frac{c}{x+5}\right)$$

Solving

$$a = \left(\frac{5x+7}{(x+1-j3)(x+5)}\right)_{x=-1-j3} = 0.3600 + j0.3533$$
$$b = \left(\frac{5x+7}{(x+1+j3)(x+5)}\right)_{x=-1+j3} = 0.3600 - j0.3533$$
$$c = \left(\frac{5x+7}{(x+1+j3)(x+1-j3)}\right)_{x=-5} = -0.7200$$

Solving using Matlab

>> x =
$$-1 - j*3 + 1e-9;$$

>> a = $(5*x+7) / ((x+1+j*3)*(x+1-j*3)*(x+5)) * (x+1+j*3)$
a = $0.3600 + 0.3533i$
>> x = $-1 + j*3 + 1e-9;$
>> a = $(5*x+7) / ((x+1+j*3)*(x+1-j*3)*(x+5)) * (x+1-j*3)$
a = $0.3600 - 0.3533i$
>> x = $-5 + 1e-9;$
>> a = $(5*x+7) / ((x+1+j*3)*(x+1-j*3)*(x+5)) * (x+5)$
a = -0.7200

More Fun with Complex Numbers

Note: These use the properties

 $\ln (e^{x}) = x$ $e^{\ln(x)} = x$ $(e^{a})^{b} = e^{ab}$

Example 1: Find y:

$$y = (2+j3)^{(4+j5)}$$

Solution: Convert to polar form (using radians)

 $2 + j3 = 3.6056 \angle 0.9828$ = $e^{\ln(3.6056)} \cdot e^{j0.9828}$ = $e^{1.2825 + j0.9828}$

Raise to the power

$$= (e^{1.2825+j0.9828})^{(4+j5)}$$
$$= e^{(0.2159+j10.3453)}$$

Separate

$$= e^{0.2159} e^{j10.3435}$$

= 1.2410 \cdot (\cos (10.3425) + j\sin (10.3435))
= 1.2410 \cdot (-0.6068 - j0.7942)
= -0.7530 - j0.9864

Check in Matlab

>> y = (2 + j*3) ^ (4 + j*5) y = -0.7530 - 0.9864i

Note: Matlab was way easier.

Check on an HP42:

2 enter 3 complex 4 enter 5 complex y^x

ans = -0.7530 - j0.9864

Free42 Decimal	54		×
File Edit Skin Help			
HEWLETT PACKARD			
425 RI	PN SCIL	ENTIFIC	
Y:0.0000 X:−0.7530 −i0.	9864		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	e ^x	GT XE	a
COMPLEX % TT ASIN	COS	TAI	N
ENTER	S DISP		
BST SOLVER J f(x) 7 8	MATRIX 9	STAT	
SST BASE CONVERT	FLAGS 6		
ASSIGN CUSTOM	PGM.FCN	PRIN	5
OFF TOP.FCN SHOW	PRGM R/S		
Conservation and the second second			and the second

Example 2: Find y:

 $y = \cos\left(2 + j3\right)$

Use Euler's identity

$$\cos(2+j3) = \left(\frac{1}{2}\right) \left(e^{(2+j3)} + e^{j(2+j3)}\right)$$
$$= \left(\frac{1}{2}\right) \left((e^2 e^{j3}) + (e^{j2} e^{-3})\right)$$

$$= \left(\frac{1}{2}\right) \left(e^2 \cdot \left(\cos(3) + j\sin(3)\right) + e^{-3} \cdot \left(\cos(2) + j\sin(2)\right)\right)$$
$$= \left(\frac{e^2\cos(3) + e^{-3}\cos(2)}{2}\right) + j\left(\frac{e^2\sin(3) + e^{-3}\sin(2)}{2}\right)$$

Check in Matlab

>> cos(2 + j*3) ans = -4.1896 - 9.1092i

Check on an HP42

2 enter 3 complex COS

ans = -4.1896 - j9.1092

🐗 F	ree42	Decim	al)	e—s:		×
File	Edit	Skin	Help					
	Ø	HEV	VLETT KARD					
	42	s			RP	N SCI	ENTIFIC	:
	γ: (X: *	9.0 -4.	000 189(5 -i'	9.1	092		
	<mark>Σ-</mark> [Σ+	بر [1/	×) (** √x` (10* LOG	ex (LN	GT XE	0 Q
G	STO	× %	(π R+	ASIN SIN	COS	AT/	N
		ITER		xst x M x≥y	HODES	DISP		AR
	BST	s	7	√ f(x) 8		AATRIX 9	STAT	5
	SST		ASE 4			FLAGS	PRO	5
			ssign 1	CUSTON 2		GM.FCN		5
U	OFF EXIT ON		OP.FCN	SHOW		PRGM R/S		OG
			a constant	to Cold h	Shippo A			

Find y:

 $y = \ln(2+j3)$

Express as an exponential

 $2 + j3 = 3.6056 \angle 0.9828$ $= e^{\ln(3.6056) + j0.9828}$

 $\ln(2+j3) = \ln(3.6056) + j0.9828$

Check in Matlab

>> log(2 + j*3) ans = 1.2825 + 0.9828i

Check with an HP42

2 enter 3 ln

ans = 1.2825 + 0.9828i

Free42 Decimal		1.000		×
File Edit Skin Help				
HewLett PACKARD				
425	R	PN SC	IENTIFIL	
y: 0.0000 x: 1.2825	i0.9	828		
$\begin{array}{c c} \Sigma^{-} & y^{x} \\ \Sigma^{+} & 1/x \end{array}$	x ² 10 √x [L0	G (LN	GT XE	ro :Q
COMPLEX %	π AS R∔ SI	N COS	s AT	AN IN
ALPHA L ENTER	AST x MOC X≷Y (+/	ES DISF		
BST SOLVER	₽ f(x) 8	MATRIX 9	STA	
SST BASE	CONVERT	FLAGS 6	PRO	
ASSIGN	CUSTOM 2	PGM.FCN	PRIN	
OFF TOP.FCN	SHOW	PRGM R/S		og
	dunkan) wang bisi	Kalita adasad	120,507-008	8800 ⁰

Handout:

- Find y by hand
- Check your answer with Matlab or a calculator

 $y = \sqrt{i}$

Moral #1: Pretty much anything you do with real numbers you can do with complex numbers. The answer will be complex though.

Moral #2: When dealing with complex numbers, it is a *lot* easier to use Matlab or an HP calculator than doing it by hand...

Summary:

- Complex numbers allow you to represent something with two degrees of freedom
- Addition, subtraction, multiplication, and division all work with complex numbers
- Calculations using complex numbers by hand is really painful.
- Calculations using complex numbers aren't too bad with Matlab or an HP calculator
 - Get familiar with a calculator which does complex numbers before you get to Circuits I
 - You're going to need it for midterms for pretty much all courses in ECE