ECE 320: Electronics Analog Electronics

ECE 111: Week #19

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Electronics: Analog Electronics

Topics in Electronics

- Power Amplifiers: Drive 8 Ohm speakers at 100 Watts
- Filters: Pass frequencies below 250Hz, reject frequencies above 400Hz
- Mixers: Combine analog signals
- Sensors: Measure sound, light, temperature, pressure, flow, etc.

This Lecture

- Finding components on Digikey
- Determining parameters for a sensor from the data sheets
- Predicting the voltage vs. temperature relationship for a thermistor
- Determining a calibration function to determine the temperature based upon voltage.

What can we measure?

• Time & Voltage

Microprocessors can measure 0V & 5V

- 0V is logic 0
- 5V is logic 1
- (Sometimes 3V is used for logic 1)

Hardware converts a signal to logic levels

- Open switch = 0V
- Closed-switch = 5V

Measuring Time

- You can measure time with insane precision
- PIC18F4620: Measures time to 100ns

Microcontrollers are clocked

• 10MHz for a PIC18F4620

By counting clocks, you know time to 100ns

- Usain Bolt travels only 1um in 100ns
- Light travels only 100 ft in 100ns
- Due to relativity, time slows down by 15ns when you fly to London

Measuring Distance

- Measuring distance is hard
- Convert distance to time and you can measure distance indirectly

Example 1: Ultrasonic Range Sensor

- Pulse width = time it takes sound to travel to an object and back
- 340mph (speed of sound) @ 100ns = 17um

By measuring time to 100ns, you can measure distance to 17um

Measuring Resistance: 555 Timer

- Resistance cannot be measured directly
- Convert it to a time to measure it indirectly
- Example: 555 timers
 - Output is a square wave

 $period = (R_1 + 2R_2) \cdot C \cdot \ln(2)$ period = 2.0794ms

With some algebra

$$R_2 = \left(\frac{period}{2 \cdot C \cdot \ln(2)}\right) - \left(\frac{R_1}{2}\right)$$

If you can measure the period to 100ns

- You can measure resistance to 0.07 Ohms
- R2 has to change by 0.07 Ohms for the period to change by 100ns

Measuring Voltage

- Another thing you can measure directly
- Most microcontrollers have an A/D converter
- 0V 5V results in A/D going from 0 to 1023 (10-bit A/D)
- Resolution = 4.88mV (one A/D count = 4.88mV)

Measuring Resistance: Voltage Divider

- Resistance cannot be measured directly
- Convert it to a voltage to measure it indirectly
- Example: Voltage Divider

$$V = \left(\frac{R}{R+1000}\right) \cdot 5V$$

With some algebra

$$R = \left(\frac{V}{5-V}\right) \cdot 1000\Omega$$

- If R = 1000 Ohms
 - V = 2.500V
 - The resolution is 3.91 Ohms
 - The resistance has to change by 3.91 Ohms for the voltage to change by 4.88mV

Sensors

Replace R with a sensor

- Temperature-Dependent Resistor (Thermistor)
- Light-Dependent Resistor (CdS cell)
- Strain-Dependent Resistor (strain gage)
- Magnetic-Field-Strength Dependent Resistor (Magneto-resistor)
- etc.

and you can measure

- Temperature
- Light
- Strain
- Magnetic fields,
- etc

Measuring Temperature (take 1)

• Thermal Diodes

The voltage drop across a diode varies with temperature

$$V_d = V_T \ln\left(\frac{N_A N_D}{n_i^2}\right)$$
$$n_i = A_0 T^3 \exp\left(\frac{-E_G}{kT}\right)$$

By measuring this voltage, you can measure temperature

Vd (Volts)

Measuring Temperature (take 2)

• RTD's (resistive thermal devices)

With metals, as the temperature goes up, the resistance goes up

 $R\approx (1+\alpha T)R_0$

By measuring the resistance, you can determine the temperature

Example: Copper RTD

- At 0C, R = 1000 Ohms
- At 50C, R = 1215 Ohms

Be	a = 2.5%/C	most sensitive
Ni	a = 0.681%/C	
Fe	a = 0.651%/C	
Cu	a = 0.43%/C	
AI	a = 0.429%/C	
Pt	a = 0.385%/C	
Nd	a = 0.16%/C	least sensitive

Example: Copper RTD

- $R = 1000 \cdot (1 + 0.0043T)\Omega$
- 1000 Ohms @ 0C
- If you measure time to 100ns
 - R is measured to 0.07 Ohms
 - T is measured to 0.016 degrees C
- If you measure voltage to 4.88mV
 - R is measured to 3.91 Ohms
 - T is measured to 0.909 degrees C

Measuring Temperature (take 3)

• Thermistor

With silicon, as the temperature goes up, the resistance goes down

$$R = R_0 \cdot \exp\left(\frac{B}{T+273} - \frac{B}{298}\right)\Omega$$

By measuring the resistance, you can determine the temperature

Example: Thermistor

Assume

- R(25C) = 1000 Ohms
- B = 3905K

$$R = 1000 \cdot \exp\left(\frac{3905}{T + 273} - \frac{3905}{298}\right)\Omega$$

At 25C, R = 1000 Ohms

If you measure time to 100ns

- You measure resistance to 0.07 Ohms
- You can measure temperature to 0.0016 degees C
- If you measure voltage to 4.88mV
 - You measure resistance to 3.91 Ohms
 - You measure temperature to 0.089 degrees C

Problem (Homework)

Find a temperature sensor from Digikey

• Assume a thermistor

Determine the parameters for this sensor

• R(25C) and B_{0/50}

Determine Resistance vs. Temperature

- Assume 0C to 50C range
- Determine Voltage vs. Temperature
 - Assume a voltage divider
- Determine a Calibration Function
 - T = f(V)

/	
	ECE 111 - Homework #14
	Week #14 - ECE 321 Electronics II Due 11 am Tuesday, November 29th Please submit as a Word or pdf file to BlackBoard or email to Jacob_Glower@yahoo.com with header ECE 111 HW#14 www.BisonAcademy.com
1s	.) Find a temperature sensor from www.Digikey.com other than the one covered in class. From the data heets, determine the resistance vs. temperature relationship.
2 t	?) Convert this resistance to a voltage using a voltage divider and a +5V source. Plot the voltage vs emperature relationship.
3	i) Over the range of C to C, determine a linear calibration curve fit as $T \approx aV + b$
4	b) Over the range of C to C, determine a cubic calibration curve fit as $T \approx aV^3 + bV^2 + cV + d$
5	i) If the voltage across your voltage divider is V, what is the temperature?

Finding Sensors: Digikey

- www.Digikey.com
- Search "Sensors"

Returns over 19,000 sensors

Electronic Components and P 🗙				
← → C 🗋 www.digikey.com/produc	:t-search/en?keywor	ds=sensors		
👯 Apps 🛛 Yahoo 🦳 Home 🦳 Davies 🦳 NDSU	🗀 Sonja			
Mini-Keu	All Products	v		Q
ELECTRONICS	PRODUCTS	MANUFACTURERS	R LIVE CHAT	
Keywords: 🕜 sensors				
In stock				
Lead free				
RoHS Compliant				
Search Again				

NTC Thermistor: 5,293 options

(Dini-Keu)	All Products	T	Q	United States	1-800-344-4539 Inglish v USD
ELECTRONICS	PRODUCTS	MANUFACTURERS	LIVE CHAT	🏲 0 item(s) 🔻	Login or REGISTER 🔻
Keywords: 🕜 sensors 🔲 In stock 🔲 Lead free				f У in (<mark>6•</mark> 🔽 69
Bearch Again					

Product Index > Sensors, Transducers > Thermistors - NTC

Results matching criteria: 5,293

To select multiple values within a box, hold down 'Ctrl' while selecting values within the box.

Manufacturer	Packaging	s	Series	Resistance in Ohms @ 25°C	Resistance Tolerance	B Value Tolerance	B0/50	B25/50	B25/75	B25/85	B2
Abracon LLC	*	*		- *	-	-	- *	*	- *		-
Ametherm	-	-		1	±0.01°C	±0.4%	2854K	-	3181K	2680K	260
Amphenol Advanced Sensors	Bulk	04C		2.2	±0.05°C	±0.5%	2941K	1950K	3254K	2700K	275
AVX Corporation	Cut Tape (CT)	111		2.5	±0.1°C	±0.7%	3000K	2150K	3477K	2750K	280
Cantherm	Digi-Reel®	112		3	±0.2%	±0.75%	3260K	2750K	3500K	2758K	290
Crouzet Automation	Tape & Box (TB)	115		3.3	±0.23°C	±0.8%	3271K	2800K	3691K	2772K	300
Curtis Instruments Inc.	Tape & Reel (TR)	118		4.7	±0.25°C	±1%	3320K	2934K	3700K	2800K	305
EPCOS (TDK)	Tray	120		5	±0.2°C	±1.3%	3419K	2950K	3890K	2850K	306
Honeywell Sensing and Control EMEA		121		6	±0.3%	±1.5%	3420K	3000K	3964K	2873K	310
Honeywell Sensing and Productivity Solutions -		123		6.8 👻	±0.5% 💌	±1.58% -	3442K 👻	3060K 👻	4064K 👻	2880K 👻	313
Reset	Reset	F	Reset	Reset	Reset	Reset	Reset	Reset	Reset	Reset	R

- **Resistance** @ **25C:** Pretty much what is says. Low values are good for measuring wind speed (low R produces more self heating. The wind provides cooling. Temperature is thus a measurement of the cooling or wind speed). High values are good for low self-heating and low-power consumption.
- **Resistance Tolerance:** Smaller is better. The variation in the resistance at 25C (manufacturing tolerance.) Sort of a measure of the standard deviation only most people don't know what standard deviation is.
- **B Value Tolerance:** Smaller is better. How accurate you know the temperature / resistance relationship, The lower the number, the more precise the measurement (and the more it costs.)
- **B0/50**, **B25/50**, etc. The temperature-resistance relationship parameter (more on this later)
- Operating Temperature (off the page to the right): The range the sensor can operate
- Mounting Type (off the page to the right): Through hole (good for us) or surface mount (good for industry).

Narrow the search to

- 1000 Ohms at 25C
- Through Hole
- In Stock

Compare Parts		Image	Digi-Key Part Number	Manufacturer Part Number	Manufacturer	Description	Quantity Available ?	Unit Price ? USD	Minimum Quantity ?	Packaging	Series	Resistance in Ohms @ 25°C	Resistance Tolerance
				▲ ▼	▲ ▼		▲ ▼	▲ ▼	▲ ▼	A V	▲ ▼	▲ ▼	
	2		BC2519-ND	NTCLE100E3102JB0	<u>Vishay BC</u> Components	THERMISTOR NTC 1.0K 5% RADIAL	8,535 - Immediate	0.39000	1	Bulk 🕄	<u>2381</u>	1k	±5%
	Z	/	BC2394-ND	NTCLE100E3102HB0	<u>Vishay BC</u> Components	THERMISTOR NTC 1.0K 3% RADIAL	2,954 - Immediate	0.45000	1	Bulk 😨	-	1k	±3%
	7		BC2393-ND	NTCLE100E3102GB0	<u>Vishay BC</u> <u>Components</u>	THERMISTOR NTC 1.0K 2% RADIAL	1,428 - Immediate	0.67000	1	Bulk 🝞	-	1k	±2%
		S I	KC016N-ND	RL2004-582-97-D1	Amphenol Advanced Sensors	THERMISTOR NTC 1K OHM @ 25C	1,233 - Immediate	2.07000	1	Bulk	<u>RL2004</u>	1k	±10%
	1		480-3157-ND	<u>192-102DEW-A01</u>	<u>Honeywell</u> Sensing and Productivity Solutions	THERMISTOR NTC 1KOHM RADIAL	483 - Immediate	7.29000	1	Bulk 🝞	<u>192</u>	1k	±1%
	7		495-2156-ND	B57891M102J	<u>EPCOS</u> (TDK)	THERMISTOR NTC 1.0K OHM 5% RAD	2,067 - Immediate	0.95000	1	Bulk 🝞	-	1k	±5%

Selecting one

Quantity

ltem Number 🕜

495-2156-ND •

Product Index > Sensors, Transducers > Thermistors - NTC > EPCOS (TDK) B57891M102J

Customer Reference

			All prices	are in US dollars.
Digi-Key Part Number	495-2156-ND	Price Break	Unit Price	Extended Price
Quantity Available	Digi-Key Stock: 2,067	1	0.95000	0.95
Qualitity Available	Can ship immediately	10	0.72200	7.22
Manufacturer	EPCOS (TDK)	100	0.51680	51.68
Manufacturer Part Number	B57891M102J	500	0.40014	200.07
Description	THERMISTOR NTC 1.0K OHM 5% RAD	1,000	0.34457	344.57
Lead Free Status / BoHS Status	Lead free / RoHS Compliant	5,000	0.30566	1,528.31
Moisture Sensitivity Level (MSL)	1 (Unlimited)	10,000	0.29455	2,945.48
worsture Sensitivity Lever (wist)	r (Oninniteu)			

Add to Cart

Image shown is a representation only. Exact specifications should be obtained from the product data sheet.

Open data sheets

General technical data

Climatic category	(IEC 60068-1)		40/125/56	
Max. power	(at 25 °C)	P ₂₅	200	mW
Resistance tolerance		$\Delta R_R/R_R$	±5, ±10	%
Rated temperature		T _R	25	°C
Dissipation factor	(in air)	δ_{th}	approx. 3.5	mW/K
Thermal cooling time constant	(in air)	τ_{c}	approx. 12	s
Heat capacity		C _{th}	approx. 40	mJ/K

Electrical specification and ordering codes

R ₂₅	No. of R/T	B _{25/100}	Ordering code
Ω	characteristic	К	
1 k	1009	3930 ±3%	B57891M0102+000
1.5 k	1008	3560 ±3%	B57891M0152+000
2.2 k	1013	3900 ±3%	B57891M0222+000
3.3 k	2003	3980 ±3%	B57891M0332+000
4.7 k	2003	3980 ±3%	B57891M0472+000
6.8 k	2003	3980 ±3%	B57891M0682+000
10 k	4901	3950 ±3%	B57891M0103+000
15 k	2004	4100 ±3%	B57891M0153+000
22 k	2904	4300 ±3%	B57891M0223+000

Translation:

- Limit the self-heating to 200mW ($I^2R < 200mW$). For a 1k thermistor, limit the voltage to less than 14.14V across the thermistor at 25C
- Dissipation factor (in air): 3.5 mW/K. At equilibrium, power out = power in. Power in is self heating (I^2R). Power out is from cooling (3.5 mW/K).
- Thermal cooling time constant (in air): 12 seconds. It takes some time for the thermistor to warm up to air temperature. The thermistor will be within 5% of equilibrium in 3 time constants, or 36 seconds.
- B25/100: 3930K. This is the temperature resistance relationship over the range of 25C to 100C (not quite what we want but close). T is the temperature in degrees Celsius (Kelvin + 273)

$$R \approx 1000 \cdot \exp\left(\frac{3930}{T+273} - \frac{3930}{298K}\right)$$

Temperature vs. Resistance

```
T = [0:0.1:50]';

R = 1000 * exp((3930 ./ (T + 273)) - (3930 / 298));

plot(T,R)
```


Temperature vs. Voltage

Assume a voltage divider with a 1k resistor & 5V source
 V = R ./ (1000 + R) * 5;
 plot(T,V)

Calibration Functions

• Linear Curve Fit

Assume you measure voltage. What is the temperature?

T = f(V)

Linear Calibration Function:

 $T \approx a \cdot V + b$

The least-squares solution is

 $T \approx -19.069 \cdot V + 73.2955$

Maximum error: 1.96 degrees

```
📣 MATLAB 7.12.0 (R2011a)
File Edit Debug Desktop Window Help
 🎦 🚰 🐰 ங 🛱 🤊 (🖭 🚵 🛒 🖹 🕜 🛛 C:\Documents and Settings\A 🔽 🛄 🔁
Shortcuts 💽 How to Add 🛛 💽 What's New
  >> T = [0:0.1:50]';
  >> K = T + 273;
  >> R = 1000 * exp((3930 ./ K) - (3930 / 29
  >> plot(T,R)
  >>
  >> V = R ./ (1000 + R) \times 5;
  >>
  >> % Basis Function: aV + b
  >> B = [V, V.^{0}];
  >> A = inv(B'*B)*B'*T
  A =
    -19.0690
      73.2955
  >> %maximum error
  >> max(abs(T - B*A))
  ans =
       1.9599
  >> plot(V,T,'b',V,B*A,'r')
f_{x} >>
```


Calibration Functions Cubic Curve Fit 	
Assume	
$T \approx a \cdot V^3 + b \cdot V^2 + c \cdot V + d$	
B = [V.^3, V.^2, V, V.^0]; A = inv(B'*B)*B'*Y	
- 1.2146531 10.385968 - 47.174316 96.973783	
meaning $T \approx -1.214 \cdot V^3 + 10.385 \cdot V^2 - 47.174V + 96.97$	7
Maximum error = 0.1087 degrees	

- 📣 N	MATLAB 7.12.0 (R2011a)
File	Edit Debug Desktop Window Help
: 🎦	। 🚰 👗 ங 🛍 🤊 (॰ 🐉 🗊 🖹 🞯 C:\Documents and Settings\A 💌) 🖻
: Sh	ortcuts 💽 How to Add 🛛 New
	>> T = [0:0.1:50]';
	>> K = T + 273;
	>> R = 1000 * exp((3930 ./ K) - (3930 / 29
	>> V = R ./ $(1000 + R) \times 5;$
	>> % Cubic Curve Fit
	>> B = [V.^3, V.^2, V, V.^0];
	>> A = inv(B'*B)*B'*T
	A =
	-1.2147
	10.3860
	-47.1743
	96.9738
	>> plot(V,T,'b',V,B*A,'r')
	>> % max error
	>> max(abs(T - B*A))
	ans =
	0.1087
6	
∫x,	>>

Converting to Temperature

• If V = 3.23 Volts, what is the temperature?

Solution: Use the calibration function you just computed

>> V = 3.23;

>> $T = [V^3, V^2, V, 1] * A$

T = 12.0248

Summary

If you can measure voltage, you can measure resistance

If you can measure resistance, you can measure temperature

• or light, strain, gas, etc.

From the data sheets, find {R_{25C}, B_{25/50}} $R = R_{25C} \cdot \exp\left(\frac{B_{25/50}}{T+273} - \frac{B_{25/50}}{298}\right)\Omega$

From Matlab, you can then find the temperature - voltage relationship $V = \left(\frac{R}{R+1k}\right) 5V$

Calibration is determining a function that relates the two

 $T \approx aV + b$

Least-squares curve fitting allows you to find {a, b}