## EE 206 Test #2c - Name \_\_\_\_\_

Thevenin Equivalents - Max Power Transfer - Superposition - Operational Amplifiers. April 22-23, 2019

1) Determine the Thevenin equivalent for the following circuit.

| Vth   | Rth        |  |
|-------|------------|--|
| 115 V | 45.61 Ohms |  |



Rth: Turn off the sources (V = 0, I = 0)

$$10||100 = 9.09$$

$$9.09 + 20 + 30 = 59.09$$

$$59.09||200 = 45.61\Omega$$

Vth: Switch from Thevenin to Norton and back

2)Determine the Thevenin equivalent for the following circuit

| Vth | Rth |
|-----|-----|
|     |     |
|     |     |
|     |     |



Take the Thevenin equivalent at A:

$$V_{th} = \left(\frac{100}{100 + 10}\right) 100V = 90.91V$$

$$R_{th} = 10 | |100 = 9.01\Omega$$

Write the voltage node equation at X

$$\left(\frac{X-90.91}{29.09}\right) + 10\left(\frac{X-90.91}{29.09}\right) + \left(\frac{X}{200}\right) = 0$$

$$X = 90.90V$$
 (which is Vth)

Rth: Apply a 1V test voltage at A and measure the current

$$I = \left(\frac{1V}{29.09\Omega}\right) + 10\left(\frac{1V}{29.09\Omega}\right) + \left(\frac{1V}{200\Omega}\right) = 383mA$$

$$R_{th} = \frac{1V}{383mA} = 2.61\Omega$$

3) The voltage and current for a circuit is measured as the resistance changes.

| R | 12.2 Ohms | 69.8 Ohms | 326.5 Ohms |
|---|-----------|-----------|------------|
| V | 1.0 V     | 4.0 V     | 8.0 V      |
| I | 81.8 mA   | 57.3 mA   | 24.5 mA    |



From this data, determine the Thevenin equivalend and the maximum power you can get out of this circuit.

| 11 V | 122 Ohms | 122 Ohms            | 248 mW         |  |
|------|----------|---------------------|----------------|--|
| Vth  | Rth      | R for maximum power | Max power to R |  |

Vth is the X intercept (11V)

$$R_{th} = \left(\frac{V_{open}}{I_{short}}\right) = \left(\frac{11V}{90mA}\right) = 122\Omega$$

Max power is when RL = Rth

At this point

$$V_L = \frac{11V}{2} = 5.5V$$

$$P_L = \frac{V^2}{R} = \frac{5.5^2}{122} = 248mW$$

## 4) Find the voltage at Y as a function of A and B

$$Y = aA + bB + c$$

| a     | b     | С     |
|-------|-------|-------|
| 0.417 | 0.278 | 0.278 |



Shortcut:

$$\left(\frac{X-A}{200}\right) + \left(\frac{X-B}{300}\right) + \left(\frac{X-10}{500}\right) + \left(\frac{X-(-10)}{600}\right) = 0$$

$$\left(\frac{1}{200} + \frac{1}{300} + \frac{1}{500} + \frac{1}{600}\right)X = \left(\frac{1}{200}\right)A + \left(\frac{1}{300}\right)B + 0.003333$$

$$X = 0.417A + 0.278B + 0.278$$

5) Determine the votlages V1, V2, V3, V4. Assume ideal op-amps.

| V1 | V2 | V3 | V4 | V5 |
|----|----|----|----|----|
|    |    |    |    |    |
|    |    |    |    |    |
|    |    |    |    |    |



$$V_p = V_m$$

$$V_1 = 12V$$

$$V_3 = V_4 = 9V$$

$$I_a = \frac{12V}{100\Omega} = 120mA$$
  
 $V_{21} = 120mA \cdot 200\Omega = 24V$   
 $V_2 = V_1 + 24V = 36V$ 

$$I_b = \left(\frac{36V - 9V}{100\Omega}\right) = 270mA$$

$$V_{35} = 270mA \cdot 300\Omega = 81V$$

$$V_5 = V_3 - 81V = -72V$$