Resistors in Series and Parallel

Some circuits you can simplify by combining resistors

Resistors in Series:

Problem: Find the net resistance of this circuit:

Using Kirchoff's voltage law:

$$Vin = V1 + V2 + V3$$

$$V_{in} = I \cdot R_1 + I \cdot R_2 + I \cdot R_3$$

$$V_{in} = I \cdot (R_1 + R_2 + R_3)$$

$$V_{in} = I \cdot R$$

Resistors in series add

Problem 1: Let R1 = 100 Ohms, R2 = 200 Ohms, R3 = 300 Ohms. Find the total resistance.

Answer: Resistors in series add:

$$R_{net} = R_1 + R_2 + R_3$$

$$R_{net} = 100\Omega + 200\Omega + 300\Omega$$

$$R_{net} = 600\Omega$$

Problem 2: Let R1 = 100 Ohms, R2 = 200 Ohms, and the total resistance be 1000 Ohms. Find R3.

Answer: Resistors in series add:

$$R_{net} = R_1 + R_2 + R_3$$

$$1000\Omega = 100\Omega + 200\Omega + R_3$$

$$R_3 = 700\Omega$$

June 17, 2020

Resistors in Parallel:

Find the net resistance:

Using Kirchoff's current law:

$$Iin = I1 + I2 + I3$$

$$I_{in} = \left(\frac{V_{in}}{R_1}\right) + \left(\frac{V_{in}}{R_2}\right) + \left(\frac{V_{in}}{R_3}\right)$$

$$I_{in} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)V_{in}$$

$$V_{in} = I_{in} \cdot \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)^{-1}$$

$$V_{in} = I_{in} \cdot \frac{P_{in}}{R_1}$$

$$V_{in} = I_{in} \cdot R$$

Resistors in parallel combine as the sum of the inverses, inverted:

$$R = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots\right)^{-1}$$

Problem 3: Let R1 = 100 Ohms, R2 = 200 Ohms, R3 = 300 Ohms. Find the total resistance.

Solution: Resistors in parallal add as the sum of the inverses inverted.

$$R_{net} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)^{-1}$$

$$R_{net} = \left(\frac{1}{100} + \frac{1}{200} + \frac{1}{300}\right)^{-1}$$

$$R_{net} = 54.54\Omega$$

Problem 4: Let R2 = 200 Ohms, R3 = 300 Ohms, and the total resistance be 100 Ohms. Find R1.

Solution:

$$R_{net} = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}\right)^{-1}$$

$$100\Omega = \left(\frac{1}{R_1} + \frac{1}{200} + \frac{1}{300}\right)^{-1}$$

$$\frac{1}{100} = \frac{1}{R_1} + \frac{1}{200} + \frac{1}{300}$$

$$R_1 = 600\Omega$$

June 17, 2020

With this, you can simplify some circuits. For example, find the resistance seen by the voltage source:

The 40 Ohm and 25 Ohm are in series. Add these to 65 Ohms.

65 Ohms and 15 Ohms are in parallel. Add these to gether

$$R = \left(\frac{1}{15} + \frac{1}{65}\right)^{-1} = 12.19\Omega$$

12.19 and 30 ohms are in series. Add thest together tp get 42/19 Ohms

3

42.19 is in parallel with 5 Ohms. Add these to gether to get

$$R = \left(\frac{1}{5} + \frac{1}{42.19}\right)^{-1} = 4.47\Omega$$

Resistors in Series and Parallel

This is in series with 20 Ohms.

The resistance seen by the 12V source is 24.47 Ohms

CircuitLab (www.CircuitLab.com)

You can check your answer in CircuitLab. This is a free (!) circuit simulator for NDSU students

- Sign up for an account using your NDSU.edu email address
- You cans save your circuits for future reference
- Please keep your circuit names clean and avoid profanity.

Step 1: Add the components

- Drag and drop components
- R rotates the component
- Double click allows you to change the value

Step 2: Connect the components using drag and drop. Note: you should see a dot when wires are connected. No dot means there's no connection.

Step 3: Click Run, DC Bias

- · Add labels for the voltages you want to look at
- Add Expression and click on a voltage (V0) to see that, click on a wire to see the current

Click Run DC Solver to get answers

From V = IR, you can compute the resistance seen by the 12V source

$$R = \frac{V}{I}$$

$$R = \frac{12V}{0.4904A} = 24.4698\Omega$$

which matches our computed resistance of 24.47 Ohms.