# **Complex Numbers**

**ECE 211 Circuits I** 

Lecture #21

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

## **Objective:**

• Become familiar with using complex numbers for addition, subtraction, multiplication, and division



#### The number Zero:

- Zero is an odd concept: something that represents nothing
- Zero isn't needed: the Romans had an extensive economy without the number zero.
- Without zero, addition becomes difficult.
- Without zero, multiplication becomes difficult

#### **Negative Numbers:**

- Negative numbers are even more starange
- Their invention allowed Holland to become a world power

By keep tracking of credits (+) and debits (-), the double-entry book-keeping system allowed Dutch merchants to understand what ventures were profitable and which were not.



### **Complex Numbers**

To solve differential equations (i.e. circuits) with sinudoidal inputs

- Solve 2N equations for 2N unknowns
  - Using sine() and cosine() functions
- Solve N equations for N unknowns
  - Using complex numbers



### **Definition of Complex Numbers**

Two basic definitions for complex numbers are

$$j^{2} = -1$$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$



### **Polar and Rectangular Form:**

A complex number can be represented in rectangular or polar form

$$x + jy \ r \cdot e^{j\theta} = r \angle \theta$$

The relationship is

$$r = \sqrt{x^2 + y^2}$$

$$\tan\left(\theta\right) = \frac{y}{x}$$

or

$$x = r \cdot \cos(\theta)$$

$$y = r \cdot \sin(\theta)$$



### **Addition**

Add real to real, complex to complex

$$4+j2$$

$$+ 1+j3$$

$$= 5+j5$$



### **Subtraction:**

Subtract real from real, complex from complex

$$5 + j5$$

$$-1+j3$$

$$5+j5$$

$$-1+j3$$

$$=4+j2$$



## Multiplication

#### **Rectangular Form:**

$$(2+j3)(4+j5) = (2 \cdot 4) + (2 \cdot j5) + (j3 \cdot 4) + (j3 \cdot j5)$$
$$= (8) + (j10) + (j12) + (j^215)$$

Note that j2 = -1:

$$= (8-15) + j(10+12)$$
$$= -7 + j22$$

Multiplication is easier in polar form:

$$(a\angle\theta)(b\angle\phi) = ab\angle(\theta + \phi)$$
$$(a \cdot e^{j\theta})(b \cdot e^{j\phi}) = ab \cdot e^{j(\theta + \phi)}$$

## **Complex Conjugates:**

The complex conjugate (symbol \*) is

$$(x+jy)^* = x-jy$$

A number multiplied by its complex conjugate is

- The real squared, plus
- The imaginary squared

$$(x+jy)(x-jy) = (x^2 + jxy - jxy - j^2y)$$
  
=  $x^2 + y^2$ 

### **Division**

Polar Form

$$\left(\frac{a\angle\theta}{b\angle\phi}\right) = \left(\frac{a}{b}\right)\angle(\theta - \phi)$$

Rectangular Form

$$\left(\frac{a+jb}{c+jd}\right) = \left(\frac{a+jb}{c+jd}\right) \left(\frac{c-jd}{c-jd}\right)$$

$$= \left(\frac{ac-bd+jbc-jad}{c^2+d^2}\right)$$

$$= \left(\frac{ac-bd}{c^2+d^2}\right) + j\left(\frac{bc-ad}{c^2+d^2}\right)$$

## **HP Calculators**

I strongly recommend getting an HP calculator

• HP35s: \$52 on Amazon

• Free42: free app for the HP42 (great calculator)

You will be using complex numbers extensively in Electrical and Computer engineering.

Get a calculator that does complex numbers

I've found that HP calculators are worth about 10 points on midterms (they breeze through complex math)

