Superposition with Phasors

ECE 211 Circuits I Lecture #29

Please visit Bison Academy for corresponding lecture notes, homework sets, and solutions

Superposition with Phasors

Op-Amp circuits with RLC components are linear circuits. *Linear* means

$$f(ax + by) = af(x) + bf(y)$$

In English, this means that

- If the input has N terms,
- You can treat this as N separate problems.

Example: RLC Filter

Determing y(t) for the following circuit assuming

$$x(t) = 10 + 9\sin(100t) + 8\cos(200t)$$

Solution: Use superposition and treat this as three separate problems.

Analyze at w = 0 (DC)

$$x_1(t) = 10$$

Analyze the circuit for this input.

$$\omega = 0 \qquad L \to j\omega L = 0 \qquad C \to \frac{1}{j\omega C} = \infty$$
$$Y_1 = \left(\frac{2000}{2000 + 278}\right) \cdot 10 = 8.7796$$

Analyze at w = 100 rad/sec

$$x_2(t) = 9\sin(100t)$$

$$\omega = 100$$

$$X = 0 - j9$$

$$L \rightarrow j\omega L = j1000$$

$$C \rightarrow \frac{1}{j\omega C} = -j5000$$

$$L \to j\omega L = j1000 \qquad C \to \frac{1}{j\omega C} = -j5000$$
$$Y_2 = \left(\frac{(1724 - j689.6)}{(1724 - j689.6) + (278 + j1000)}\right) \cdot (0 - j9) = -4.201 - j7.099$$

Analyze at w = 200 rad/sec

$$x_3(t) = 8\cos(200t)$$

$$X = 8 + j0$$

$$L \rightarrow j\omega L = j2000$$

$$\omega = 200$$

$$C \rightarrow \frac{1}{j\omega C} = -j2500$$

$$\left(\frac{1}{2000} + \frac{1}{-j2500}\right)^{-1} = 1219 - j975.6$$

$$Y = \left(\frac{1219 - j975.6}{(1219 - j975.6) + (278 - j2000)}\right) \cdot (8 + j0)$$

$$Y = 2.009 - j6.586$$

The total answer is the sum of the three parts

$$y(t) = y_1 + y_2 + y_3$$

$$\omega = 0$$
 $Y_1 = 8.7796$
 $\omega = 100$ $Y_2 = -4.201 - j7.099$
 $\omega = 200$ $Y_3 = 2.009 - j6.596$

$$y(t) = 8.7796$$

$$-4.201 \cos(100t) + 7.099 \sin(100t)$$

$$+2.009 \cos(200t) + 6.596 \sin(200t)$$