
Filters: Analysis and Design

Background

A filter is a circuit whose gain is a function of frequency. Essentially,

Any circuit with inductors and/or capacitors is a filter.

Any circuit which satisfies a differential equation is a filter.

Any circuit where the input and output relationship is described by a transfer function is a filter.

Analysis

Filter analysis is easy: just evaluate G(jw) to find the gain vs. frequency.

Example 1: Plot the gain vs. frequency for the following filter:

Y = 


200s

(s+2)(s+3)(s+4)


X

Solution: Using Matlab

w = [0:0.01:20]';
s = j*w;
G = 200*s ./ ((s+2) .* (s+3) .* (s+4));

plot(w,abs(G))
xlabel('Frequency (rad/sec)');
ylabel('Gain');

Gain of G(jw) from 0 to 20 rad/sec

What this graph tells you is:

The gain is zero at DC (s = 0)

The gain is a maximum at 2 rad/sec

The gain goes back to zero as the frequency goes to infinity

NDSU Filters: Analysis and Design ECE 311

JSG 1 July 18, 2018

Design

Design is a bit more tricky. Note that the transfer function in general has zeros and poles:

G(s) = k ⋅
z(s)

p(s)

Graphically, the gain can be interpreted as

G(jω) = k ⋅
Π(distance from the zeros to jω)

Π(distance from the poles to jω)

This leads to one design technique:

Place zeros close to the frequencies you want to block (multiply by a small number)

Place poles close to the frequencies you want to pass (divide by a small number)

The closer you place the pole or zero to the jw axis, the more selective the filter is.

Using Matlab, you can use the function fminsearch() to design a filter. fminsearch() finds the minimum of a

function. For example, suppose you want to find the square root of two:

x = 2

To do that, set up a function where

You pass your guess at x,

Compute the error

e = x2 − 2

And return a cost function, J(x), which is the error squared

J = e2

fminsearch() will then guess x over and over until it finds the value that minimizes J. In Matlab:

function [J] = cost(z)

 x = z;
 e = x*x - 2;
 J = e^2;

 end

From Matlab, you can guess the value of x over and over again. The goal is to find the value that

returns zero (the squared error is zero, meaning the error is zero)

cost(5)
 529

cost(4)
 196

cost(3)
 49

or you can let Matlab do the guessing for you:

NDSU Filters: Analysis and Design ECE 311

JSG 2 July 18, 2018

[z,e] = fminsearch('cost',5)

z = 1.4142

e = 6.7242e-009

This tells you that

The error is almost zero (fminsearch() was able to find the solution), and

That solution was 1.4142

Example 2: Real Poles

Design a filter of the form

G(s) = 


4abcd

(s+a)(s+b)(s+c)(s+d)




so that the gain of the filter is as close as possible to an ideal low-pass filter:

Gd(jω) =





4 0 < ω < 3

0 ω > 3

Solution: Set up a function in Matlab where

You guess (a, b, c, d),

If computes G(jw) for these values of (a, b, c, d),

It computes the difference (error) in the gain between G(s) and Gd(s), and

It returns the sum squared error

Matlab Code:

function [J] = cost2(z)

 a = z(1);
 b = z(2);
 c = z(3);
 d = z(4);

 w = [0:0.01:10]';
 s = j*w;

 Gd = 4 * (w < 3);

 Gs = 4*a*b*c*d ./ ((s+a) .* (s+b) .* (s+c) .* (s+d));

 e = abs(Gd) - abs(Gs);

 J = sum(e.^2);

 plot(w,abs(Gd),w,abs(Gs));
 pause(0.01);

 end

NDSU Filters: Analysis and Design ECE 311

JSG 3 July 18, 2018

Calling this in Matlab:

>> [z,e] = fminsearch('cost2',[1,2,3,4])

z = 4.0828 4.0828 4.0827 4.0828

e = 747.6329

This tells you that

It wasn't able to exactly match the desired response. The best it could do had a sum-squared

error of 747.36

The best filter Matlab could come up with for this cost function was

G(s) = 4 ⋅ 
4.08284

(s+4.0828)4




Pictorially, the graph below shows

The location of the four poles on the complex plane (marked by x)

The gain times 4 vs. frequency, rotated (shown in blue)

Note that

When you are close to the poles, the gain is large (near w = 0)

When you move away from the poles, the gain drops

Location of the poles (blue x) and G(jw) vs. frequency (rotated - shown in dark blue)

NDSU Filters: Analysis and Design ECE 311

JSG 4 July 18, 2018

This isn't a very good filter. If you constrain yourself to using real poles, you can't do much.

NDSU Filters: Analysis and Design ECE 311

JSG 5 July 18, 2018

Example 3: Complex Poles

Design a filter of the form

G(s) =





4bd


s

2+as+b

s

2+cs+d






so that the gain of the filter is as close as possible to an ideal low-pass filter:

Gd(jω) =





4 0 < ω < 3

0 ω > 3

Solution: Change the cost function:

function [J] = cost2(z)

 a = z(1);
 b = z(2);
 c = z(3);
 d = z(4);

 w = [0:0.01:10]';
 s = j*w;

 Gd = 4 * (w < 3);

 Gs = 4*b*d ./ ((s.^2 + a*s + b) .* (s.^2 + c*s + d));

 e = abs(Gd) - abs(Gs);

 J = sum(e.^2);

 plot(w,abs(Gd),w,abs(Gs));
 pause(0.01);

 end

Let Matlab iterate to find the best filter:

[z,e] = fminsearch('cost2',[1,2,3,4])

z = 1.7864 1.7789 0.6427 6.8938

e = 160.6407

This tells you

The filter is better: the sum squared error is now 160 vs. 747

The 'best' filter given this cost function is

G(s) = 4





1.7789⋅6.8938


s

2+1.7864s+1.7789

s

2+0.6427s+6.8938






G(s) = 4
1.7789⋅6.8938

(s+0.8932±j0.9905)(s+0.3213±j2.6059)




NDSU Filters: Analysis and Design ECE 311

JSG 6 July 18, 2018

Gain vs. Frequency with 4 complex poles (thick blue line) and pole locations (blue x's)

Note that

This filter is much better: if you are allowed to use complex poles, you can approximate an ideal filter

much better than with real poles.

The poles are scattered across the passband: from -j3 to +j3

When you are close to a pole, you get a resonance (the gain has a peak at that frequency)

NDSU Filters: Analysis and Design ECE 311

JSG 7 July 18, 2018

Example 4: Complex poles and zeros

Design a filter with 4 poles and two zeros:

G(s) = 4





es2+fs+bd


s

2+as+b

s

2+cs+d






Solution: Modify the cost function

function [J] = cost2(z)

 a = z(1);
 b = z(2);
 c = z(3);
 d = z(4);
 e = z(5);
 f = z(6);

 w = [0:0.01:10]';
 s = j*w;

 Gd = 4 * (w < 3);

 Gs = 4*(e*s.^2 + f*s + b*d) ./ ((s.^2 + a*s + b) .* (s.^2 + c*s + d));

 e = abs(Gd) - abs(Gs);

 J = sum(e.^2);

 plot(w,abs(Gd),w,abs(Gs));
 pause(0.01);

 end

Call it using Matlab:

[z,e] = fminsearch('cost2',[1,2,3,4,5,6])

z = 0.4223 7.8893 2.2963 3.1890 1.9867 -0.0001

e = 92.5262

This tells you

The filter is better: the sum-squared error is now 92 (vs 747 or 160)

The best Matlab can do with this cost function is

G(s) = 4 ⋅





1.9867s2−0.0001s+7.8893⋅3.1890


s

2+0.4223s+7.8893

s

2+2.2963s+3.1890






or

G(s) = 4 ⋅ 
1.9867(s±j3.5586)

(s+0.2111±j2.8008)(s+1.1481±j1.3678)




NDSU Filters: Analysis and Design ECE 311

JSG 8 July 18, 2018

Gain vs. Frequency (dark blue line) and pole / zero location

Note that

By adding a zero at j3.55, the gain is zero at 3.55 rad/sec.

The pole near the zero was pushed out and towards the real axis (pole at s -0.2111 + j2.8008)

NDSU Filters: Analysis and Design ECE 311

JSG 9 July 18, 2018

