
Active Filters

Background:

Filters are circuits whose behaviour changes with frequency.  Essentially, all circuits with capacitors and/or

inductors are filters.

When analyzing a filter, sinusoids are used for the inputs and outputs.  Sinusoids are very special signals.  For

example, assume you apply a 1Hz signal to an RC filter which satisfies the following differential equation

dy

dt
+ 5y = 5x

where y is the output of the RC filter and x is the input.  If the input is a 1Hz square wave, the output will not be a

square wave.  The relationship between the two is not a simple one.
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If the input is a 1Hz sine wave, however, the output is also a 1Hz sine wave.  
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A simple way to relate the two signals is the change in amplitude and the phase shift.

Phasor analysis is a quick way to determine the output of a filter (or the solution to a differential equation) for

sinusoidal inputs.  Since you know the output will also be a sine wave of the same frequency as the input, all you

need to know is the amplitude and the phase shift of the output.

For example, assume you want to find the solution to the above differential equation for

x(t) = sin (2πt)

Using phasor analysis, replace all derivatives with 's' and solve for the output, Y:
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sY + 5Y = 5X

Y = 


5

s+5

X

The function is the gain from the input to the output at all frequencies.  Since you only care about the gain


5

s+5



at 1Hz, analyze this as




5

s+5



s=j2π

= 0.627∠ − 51.50

This means that at 1Hz, the output will be 0.627 of the input, shifted -51.5 degrees.  If 

x(t) = sin(2πt)

then

y(t) = 0.627 sin (2πt − 51.50)

Note from (4) that the gain from the input to the output is a function of frequency.  If you plot the magnitude of

the gain vs. frequency, you can get a feeling for how this system behaves:
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When the input is less than 0.5Hz, the gain is almost one:  the output is almost as large as the input.  When the

input is past 2Hz (or so), the gain drops.  In short, this filter passes low frequencies (near zero) and rejects high

frequencies.  Hence, it is called a low-pass filter.
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Active Filters

A filter is simply a circuit where the gain is a function of frequency.  An active filter is a filter which includes

one or more op-amps.  What including an op-amp does for you is it allows:

Gains larger than one

High input impedances, reducing the loading effect of the filter on the driving circuit

Low output impedances, allowing the filter to drive various items, and

A filter with real and/or complex poles without using inductors.

Inductors tend to be large, lossy, prone to coupling, and expensive.  Circuits which only use capacitors and

resistors tend to work much better.

In general, a filter will be of the form

G(s) = k
(s+z1)(s+z2)

(s+p1)(s+p2)(s+p3)




where

zi are the zeros of the filter,

pi are the poles of the filter, and

k is a gain.

Today's lecture covers different circuits to implement a filter with

Real poles, and

Complex Poles
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Real Poles:  Passive RC Filters

Problem:  Design a circuit to implement

Y = 


abc

(s+a)(s+b)(s+c)

X

Solution:  One solution is to use an RC filter:

+

-
X

R1 = 1k R2 = 10k R3 = 100k

C1 C2 C3

Y

The transfer function is then

Y ≈ 


abc

(s+a)(s+b)(s+c)

X

where

a = 


1

R1C1




b = 


1

R2C2




c = 


1

R3C3




Notes:

This filter is easy to build (good), but

It's not a very good filter (gain drops off with frequency very fast)

Also, the reason the resistor goes up 10x each state is to prevent loading.  If R2 did not exist, then gain to V1

would be

V1 = (
a

s+a)X

where

a = 


1

R1C1




By adding R2, current is shunted from C1, changing the circuit.  By making R2 large relative to R1, this loading

is there but is small.
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Real Poles, No Zeros (take 2)

X

Y

R1

C

R2

Y = −
a

s+b


X

where

a = 1

R2C

b = 1

R1C
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Complex Poles, No Zeros

C C

R1

X R R

R2

Y

Y =





k⋅
1

RC



2

s2+
3−k

RC

 s+

1

RC



2




X

This filter has two complex poles with

Amplitude =  
1

RC

Angle: 3 − k = 2 cos θ

DC gain k = 
1 +

R2

R1




Note that the angle of the poles goes from

0 degrees when k =1

90 degrees when k = 3 (an oscillator)

real

jw

s-plane pole

1/RC

k = 1

k = 3
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Comples Polex, Two Zeros at s = 0

X

Y

R2R1

C C

R R

Y =





k⋅s2

s2+
3−k

RC

 s+

1

RC



2




X

This filter has two complex poles with

Amplitude =  
1

RC

Angle: 3 − k = 2 cos θ

High Freq gain k = 
1 +

R2

R1



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Comples Polex, One Zeros at s = 0:  Y = 


as

s2+bs+c


X

+

-
X

Y

C

C
R1

R2

R3

A B

1/Cs

1/Cs

Y =








−
1

R1C


 s

s2+
2

R3C

 s+

R1+R2

R1R2








1

R3C2













X
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Example: Design a circuit to implement

Y = 


1,244,485

(s+85)(s+121∠69.50)(s+121∠−69.50)


X

Rewrite this as

Y = 


85

s+85





14,641

(s+121∠69.50)(s+121∠−69.50)


X

Use the previous filters 

C C

R1

R R

R2

Y

C0

R0









1

R0C0




s+



1

R0C0













k⋅
1

RC



2

s2+
3−k

RC

 s+

1

RC



2






To avoid loading, let

R0 = 10k

R = 100k

Matching terms in the denominator: 

                   



1

R0C0


 = 85 C0 = 1.17µF

                     



1

RC


 = 121 C = 0.082µF

3 − k = 2 cos (69.50)

k = 2.3

1 +
R2

R1
= 2.3

R1 = 100k,     R2 = 1.3k

Note:  This circuit has a DC gain of 2.3 (instad of 1.0).  Just note this and call the output 2.3Y.
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Example:  Design a filter to implement

Y =





100,000s2


s

2+14s+100

s

2+100s+10,000




X

Solution:  Rewrite this as the product of two filters:

Y =





s2


s

2+14s+100










10,000


s

2+100s+10,000




X

Using the previous circuits (building blocks),

C C

R1

R R

R2

R2R1

C C

R R

X

Y






k⋅s2

s2+
3−k

RC

 s+

1

RC



2











k⋅
1

RC



2

s2+
3−k

RC

 s+

1

RC



2






Matching the poles:




1

RC




2

= 100 


1

RC




2

= 10, 000

R = 100k R = 100k

C = 0.1uF C = 0.001uF

3 − k = 2 cos (450) 3 − k = 2 cos (600)

k = 1.5858 k = 2

R1 = 100k R1 = 100k

R2 = 58k R2 = 100k

Note:  This circuit has a DC gain of 3.17 (instad of 1.0).  Just note this and call the output 3.17Y.
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Filter Description G(s) Circuit

Real Poles

No Zeros

DC gain > 1

;




kab

(s+a)(s+b)




a =
1

R1C1

b =
1

R2C2

R2 = 10R1

k = 1 +
R4

R3

R3 R4

R1 R2

C2C1

Y

X

k = 1 + R4 / R3

a = 1 / (R1 C1)

b = 1 / (R2 C2)
R2 = 10 R1

Single Real Pole

No Zeros

;




−a

s+b




b = 1

R1C

a

b
=

R1

R2

R1

R2

C

Y

X

Complex Poles

No Zeros

;




ka2

(s+a∠θ)(s+a∠−θ)



a = 1

RC

k = 1 +
R4

R3

3 − k = 2 cos θ

R4R3

RR

C C

X
Y
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