
Poles, Zeros, and Frequency Response

With the previous circuits, you can build filters with

Real poles

Complex Poles, and

Zeros at s = 0

Filter design uses this to places poles and zeros to give a desired frequency response. In this lecture we

look at how the poles and zeros affect the gain vs. frequency for a filter.

Analysis: Given a filter, find the gain vs. frequency.

This is actually really easy: just plug it into Matlab. For example, plot the gain vs. frequency for

Y = 


2s

s2+2s+10


X

for

 rad/sec0 < ω < 10

In Matlab:

-->w = [0:0.01:10]';
-->s = j*w;
-->G = 2*s ./ (s.^2 + 2*s + 10);
-->plot(w,abs(G));
-->xlabel('Frequency (rad/sec)');
-->ylabel('Gain');

NDSU Poles, Zeros, and Frequency Response ECE 321

JSG - 1 - rev April 5, 2018

Design: Given a desired frequency response, design a filter to match (or come close) to your design.

This gets a lot trickier. To do this, let's first look at how poles and zeros affect the gain of a filter.

Let's start with about the simplest filter you can make:

Y = 


1

s+a

X

The frequency response is obtained by letting :s → jω

Y = 


1

jω+a


X

Graphically, the gain is equal to the vector '1' divided by the vector ' '. The latter term is equal tojω + a

the vector from the pole at -a to the origin (a) plus the vector .jω

a

jw

jw+a

-a

imag

real

Since you're dividing by , the gain is jω + a

A maximum when you're closest to the pole (i.e. at w = 0).

Zero when you're far away from the pole (at infinity), and

Down by when the frequency is ja2

Note that this also works for comples polex. If your filter has a pole at s = -1 + j10:

Y = 


1

s+1−j10

X

then

The gain will be a maximum at s = j10 (the closest point on the jw axis to the pole)

The gain drops by when at s = j9 and s = j11 (when you are 1 rad/sec away from the max gain2
point. 1 is the real part of the pole)

NDSU Poles, Zeros, and Frequency Response ECE 321

JSG - 2 - rev April 5, 2018

A generalized filter will look something like

Y = k
(s+z1)(s+z2)

(s+p1)(s+p2)(s+p3)


X

where

zi are the zeros,

pi are the poles, and

k is a constant gain

The graphical interpriation for this filter is

gain = k ⋅
Π(distance from jw to the zeros)

Π(distance from jw to the poles)

Note that

If you're close to a zero, the gain is small (multiply by a small number)

If you're close to a pole, the gain is large (divide by a small number)

So, a design strategy could be

Place zeros near frequencies you want to reject

Place poles near frequencies you want to pass.

To do this, the Matlab fminsearch() can be useful.

NDSU Poles, Zeros, and Frequency Response ECE 321

JSG - 3 - rev April 5, 2018

Problem: Design a filter to approximate an ideal low-pass filter with a gain of

G ideal(s) ≈





1 ω < 4

0 otherwise

With fminsearch(), you first assume the form of the filter. Let's start by assuming a 4th-order filter with

real poles:

G(s) = 


a

(s+b)(s+c)(s+d)(s+e)




To determine how good this filter, define a cost function to be the sum-squared difference in the two

filters

E(jω) = G ideal(jω) − G(jω)

J = ∫0

10
E2(jω) ⋅ dω

where the integration range is somewhat arbitrary (it covers the pass band and some of the reject region)

A Matlab m-file to do this is

function [J] = costf(z)

 a = z(1);

 b = z(2);

 c = z(3);

 d = z(4);

 e = z(5);

 w = [0:0.01:10]';

 s = j*w;

 Gideal = 1 .* (w < 4);

 G = a ./ ((s+b) .* (s+c) .* (s+d) .* (s+e));

 E = abs(Gideal) - abs(G);

 J = sum(E .^ 2);

 plot(w,abs(Gideal),w,abs(G));

 pause(0.01);

end

If you make your initial guess

G(s) = 


100

(s+2)(s+3)(s+4)(s+5)




NDSU Poles, Zeros, and Frequency Response ECE 321

JSG - 4 - rev April 5, 2018

then

>> J = costf([100,2,3,4,5])

J = 145.8354

If you let fminsearch() guess and guess to minimize J you get

>> [a,b] = fminsearch('costf',[100,2,3,4,5])

a =

 697.8575 4.9165 4.9165 4.9165 4.9165

b =

 55.3564

The best Matlab could do if you constrain it to have real poles is to place the four poles at

G(s) = 


697

(s+4.916)4




If you plot the pole location on the s-plane along with the gain (drawn sideways so that the y-axis is jw or

frequency), it looks like this:

NDSU Poles, Zeros, and Frequency Response ECE 321

JSG - 5 - rev April 5, 2018

Pole Location in the s-plane along with the gain vs. frequency drawn sideways

Note that

There are four poles at s = -4.91.

The gain is large when you're close to the pole

The grain drops as you move away from the pole (drops as 1 / distance 4)

It's also not a very good filter: you can't do much with just real poles.

NDSU Poles, Zeros, and Frequency Response ECE 321

JSG - 6 - rev April 5, 2018

Complex Poles: Instead, let G(s) be of the form

G(s) = 


a

s4+bs3+cs2+ds+e




An m-file for this filter is

function [J] = costf(z)

 a = z(1);

 b = z(2);

 c = z(3);

 d = z(4);

 e = z(5);

 w = [0:0.01:10]';

 s = j*w;

 Gideal = 1 .* (w < 4);

 G = a ./ (s.^4 + b*s.^3 + c*s.^2 + d*s + e);

 E = abs(Gideal) - abs(G);

 J = sum(E .^ 2);

 plot(w,abs(Gideal),w,abs(G));

 pause(0.01);

end

Minimizing the cost:

>> [a,b] = fminsearch('costf',10*rand(1,5))

a =

 36.6716 -1.3547 13.7226 -24.3743 39.3082

b =

 13.0720

meaning

G(s) = 


36.67

s4+1.3547s3+13.7226s2+24.3743s+39.3




The roots of the denominator are:

>> roots([1,a(2:5)])

ans =

NDSU Poles, Zeros, and Frequency Response ECE 321

JSG - 7 - rev April 5, 2018

 0.4157 + 3.4910i
 0.4157 - 3.4910i
 -1.0930 + 1.4091i
 -1.0930 - 1.4091i

which is unstable. Reflecting the unstable poles to the left-half plane gives

G(s) = 


36.67

(s+0.41±j3.49)(s+1.09±j1.41)




The gain vs. frequency and pole location looks like:

Note that to design an 'optimal' low-pass filter with 4 poles,

You place the 4 poles in the pass-band region (-4 to +4 rad/sec)

Close to the jw axis

Spread out so that as you go from -j4 to +j4, you're always close to a pole (and the gain is large)

As you move past 4 rad/sec, the distance to the poles increases, resulting in the gain dropping.

You can to a lot better if you're allowed to use complex poles.

NDSU Poles, Zeros, and Frequency Response ECE 321

JSG - 8 - rev April 5, 2018

Just for fun, try one more filter of the form

G(s) = 


a⋅c⋅e

(s+a)(s2+bs+c)(s2+ds+e)




This has five poles along with a DC gain of one:

function [J] = costf(z)

 a = z(1);

 b = z(2);

 c = z(3);

 d = z(4);

 e = z(5);

 w = [0:0.01:10]';

 s = j*w;

 Gideal = 1 .* (w < 4);

 G = a*c*e ./ ((s+a) .* (s.^2 + b*s + c) .* (s.^2 + d*s + e));

 G = abs(G);

 G2 = max(0, G-1);

 E = abs(Gideal) - abs(G);

 J = sum(E .^ 2) + 10 * sum(G2.^2);

 plot(w,abs(Gideal),w,abs(G));

 pause(0.01);

end

Running in Matlab:

>> [a,b] = fminsearch('costf',10*rand(1,5))

a =

 1.2226 0.6761 13.5006 1.8855 5.7318

b =

 9.6110

meaning

G(s) = 


96.4

(s+1.222)(s2+0.6761s+13.5)(s2+1.88s+5.73)




Plotting the pole location vs. gain like before:

NDSU Poles, Zeros, and Frequency Response ECE 321

JSG - 9 - rev April 5, 2018

Pole Location & Gain (drawn sidweways)

Note that there is definately a pattern here:

You scatter N poles in the pass-band

It appears the poles are placed on an ellipse - farthest away from the jw axis at w=0 and closer as

you move away from w = 0

NDSU Poles, Zeros, and Frequency Response ECE 321

JSG - 10 - rev April 5, 2018

