
Poles, Zeros, and Frequency Response

With the previous circuits, you can build filters with

Real poles

Complex Poles, and

Zeros at s = 0

Filter design uses this to places poles and zeros to give a desired frequency response.  In this lecture we

look at how the poles and zeros affect the gain vs. frequency for a filter.

Analysis: Given a filter, find the gain vs. frequency.

This is actually really easy:  just plug it into Matlab.  For example, plot the gain vs. frequency for

Y = 


2s

s2+2s+10


X

for

  rad/sec0 < ω < 10

In Matlab:

-->w = [0:0.01:10]';
-->s = j*w;
-->G = 2*s ./ (s.^2 + 2*s + 10);
-->plot(w,abs(G));
-->xlabel('Frequency (rad/sec)');
-->ylabel('Gain');
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Design:  Given a desired frequency response, design a filter to match (or come close) to your design.

This gets a lot trickier. To do this, let's first look at how poles and zeros affect the gain of a filter.

Let's start with about the simplest filter you can make:

Y = 


1

s+a

X

The frequency response is obtained by letting :s → jω

Y = 


1

jω+a


X

Graphically, the gain is equal to the vector '1' divided by the vector ' '.  The latter term is equal tojω + a

the vector from the pole at -a to the origin (a) plus the vector .jω

a

jw

jw+a

-a

imag

real

Since you're dividing by , the gain is jω + a

A maximum when you're closest to the pole (i.e. at w = 0).

Zero when you're far away from the pole (at infinity), and

Down by  when the frequency is ja2

Note that this also works for comples polex.  If your filter has a pole at s = -1 + j10:

Y = 


1

s+1−j10

X

then

The gain will be a maximum at s = j10  (the closest point on the jw axis to the pole)

The gain drops by when at s = j9 and s = j11 (when you are 1 rad/sec away from the max gain2
point.  1 is the real part of the pole)
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A generalized filter will look something like

Y = k
(s+z1)(s+z2)

(s+p1)(s+p2)(s+p3)


X

where

zi are the zeros,

pi are the poles, and

k is a constant gain

The graphical interpriation for this filter is

gain = k ⋅
Π(distance from jw to the zeros)

Π(distance from jw to the poles)

Note that

If you're close to a zero, the gain is small (multiply by a small number)

If you're close to a pole, the gain is large (divide by a small number)

So, a design strategy could be

Place zeros near frequencies you want to reject

Place poles near frequencies you want to pass.

To do this, the Matlab fminsearch() can be useful.
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Problem: Design a filter to approximate an ideal low-pass filter with a gain of

G ideal(s) ≈





1 ω < 4

0 otherwise

With fminsearch(), you first assume the form of the filter.  Let's start by assuming a 4th-order filter with

real poles:

G(s) = 


a

(s+b)(s+c)(s+d)(s+e)




To determine how good this filter, define a cost function to be the sum-squared difference in the two

filters

E(jω) = G ideal(jω) − G(jω)

J = ∫0

10
E2(jω) ⋅ dω

where the integration range is somewhat arbitrary (it covers the pass band and some of the reject region)

A Matlab m-file to do this is

function [ J ] = costf( z )

 a = z(1);

 b = z(2);

 c = z(3);

 d = z(4);

 e = z(5);

 

 w = [0:0.01:10]';

 s = j*w;

 Gideal = 1 .* (w < 4);

 

 G = a ./ ( (s+b) .* (s+c) .* (s+d) .* (s+e) );

 

 E = abs(Gideal) - abs(G);

 

 J = sum(E .^ 2);

 

 plot(w,abs(Gideal),w,abs(G));

 pause(0.01);

 

end

If you make your initial guess

G(s) = 


100

(s+2)(s+3)(s+4)(s+5)



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then

>> J = costf([100,2,3,4,5])

J =   145.8354

If you let fminsearch() guess and guess to minimize J you get

>> [a,b] = fminsearch('costf',[100,2,3,4,5])

a =

  697.8575    4.9165    4.9165    4.9165    4.9165

b =

   55.3564

The best Matlab could do if you constrain it to have real poles is to place the four poles at

G(s) = 


697

(s+4.916)4




If you plot the pole location on the s-plane along with the gain (drawn sideways so that the y-axis is jw or

frequency), it looks like this:
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Pole Location in the s-plane along with the gain vs. frequency drawn sideways

Note that 

There are four poles at s = -4.91.

The gain is large when you're close to the pole

The grain drops as you move away from the pole (drops as 1 / distance 4 )

It's also not a very good filter:  you can't do much with just real poles.
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Complex Poles:  Instead, let G(s) be of the form

G(s) = 


a

s4+bs3+cs2+ds+e




An m-file for this filter is

function [ J ] = costf( z )

 a = z(1);

 b = z(2);

 c = z(3);

 d = z(4);

 e = z(5);

 

 w = [0:0.01:10]';

 s = j*w;

 Gideal = 1 .* (w < 4);

 

 G = a ./  (s.^4 + b*s.^3 + c*s.^2 + d*s + e );

 

 E = abs(Gideal) - abs(G);

 

 J = sum(E .^ 2);

 

 plot(w,abs(Gideal),w,abs(G));

 pause(0.01);

 

end

Minimizing the cost:

>> [a,b] = fminsearch('costf',10*rand(1,5))

a =

   36.6716   -1.3547   13.7226  -24.3743   39.3082

b =

   13.0720

meaning

G(s) = 


36.67

s4+1.3547s3+13.7226s2+24.3743s+39.3




The roots of the denominator are:

>> roots([1,a(2:5)])

ans =
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   0.4157 + 3.4910i
   0.4157 - 3.4910i
  -1.0930 + 1.4091i
  -1.0930 - 1.4091i

which is unstable.  Reflecting the unstable poles to the left-half plane gives

G(s) = 


36.67

(s+0.41±j3.49)(s+1.09±j1.41)




The gain vs. frequency and pole location looks like:

Note that to design an 'optimal' low-pass filter with 4 poles,

You place the 4 poles in the pass-band region (-4 to +4 rad/sec)

Close to the jw axis

Spread out so that as you go from -j4 to +j4, you're always close to a pole (and the gain is large)

As you move past 4 rad/sec, the distance to the poles increases, resulting in the gain dropping.

You can to a lot better if you're allowed to use complex poles.
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Just for fun, try one more filter of the form

G(s) = 


a⋅c⋅e

(s+a)(s2+bs+c)(s2+ds+e)




This has five poles along with a DC gain of one:

function [ J ] = costf( z )

 a = z(1);

 b = z(2);

 c = z(3);

 d = z(4);

 e = z(5);

 

 w = [0:0.01:10]';

 s = j*w;

 Gideal = 1 .* (w < 4);

 

 G = a*c*e ./  ( (s+a) .* (s.^2 + b*s + c) .* (s.^2 + d*s + e ) );

 

 G = abs(G);

 G2 = max(0, G-1);

  

 E = abs(Gideal) - abs(G);

 

 J = sum(E .^ 2) + 10 * sum(G2.^2);

 

 plot(w,abs(Gideal),w,abs(G));

 pause(0.01);

 

end

Running in Matlab:

>> [a,b] = fminsearch('costf',10*rand(1,5))

a =

    1.2226    0.6761   13.5006    1.8855    5.7318

b =

    9.6110

meaning

G(s) = 


96.4

(s+1.222)(s2+0.6761s+13.5)(s2+1.88s+5.73)




Plotting the pole  location vs. gain like before:
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Pole Location & Gain (drawn sidweways)

Note that there is definately a pattern here:

You scatter N poles in the pass-band

It appears the poles are placed on an ellipse - farthest away from the jw axis at w=0 and closer as

you move away from w = 0

NDSU Poles, Zeros, and Frequency Response ECE 321

JSG -  10  - rev April 5, 2018


