Student t Distribution with >2 Populations

ECE 341: Random Processes Lecture #28

note: All lecture notes, homework sets, and solutions are posted on www.BisonAcademy.com

Student-t Test with One Population

The Student-t Test is designed for a single population

Population	mean	st dev	sample size
A	90.00	10.00	5

What is the chance A scores more than 100 points?

Find the t-score

$$t = \left(\frac{100 - 90}{10}\right) = 1.00$$

Use a t-table to convert to a probability

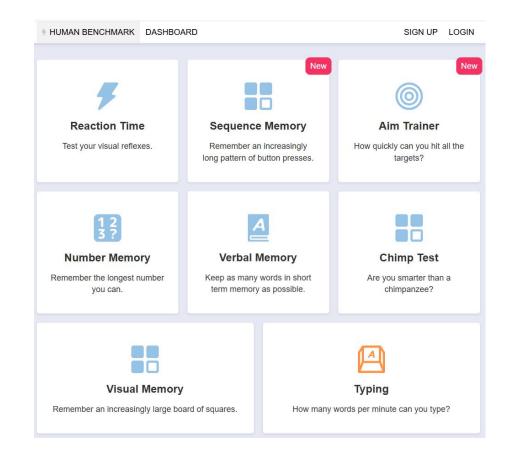
t-Test with Two Populations

Compare two populations: A and B

- What is the chance A wins the next game?
- What is the chance A is the better team?

Solution:

- Create a new variable: W = A B
- You now have a t-test with one population


Population	mean	st dev	df
A	90.00	10.00	5
В	85.00	11.00	6
W A - B	5.00	14.87 individual	5 approx

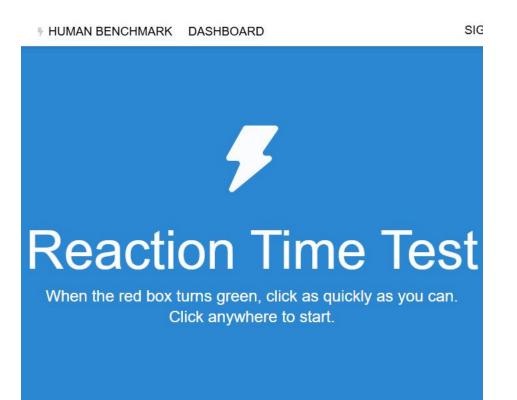
Example: Reaction Times

- Several online sites let you record your reaction time
 - https://humanbenchmark.com/tests/reactiontime
- Several homework sets in ECE 376 & 476

Using this you can test several questions.

- Are my reaction times better...
 - For person A vs B?
 - If I hold my breath?
 - Morning vs. Afternoon
 - For lights or sounds?
 - Yellow light vs. red light
 - etc
- Any can be a testable hypothesis

Reaction Time: A vs. B


https://humanbenchmark.com/tests/reactiontime

Have two people record their reaction time

- A: [248, 230, 233, 241, 235] ms;
- B: [214, 217, 231, 224, 216] ms;

Ask a question:

• What is the chance that A will be faster than B next trial?

Data Analysis

Compute the t-score:

```
>> A = [248, 230, 233, 241, 235];
>> B = [214, 217, 231, 224, 216];
>> Xw = mean(A) - mean(B)
Xw = 17
>> Sw = sqrt(var(A) + var(B))
Sw = 10.0300
>> t = Xw / Sw
t = 1.6949
```

Convert to a probability

- p = 0.08267
- 8.267% chance A will be faster than B next game

 Select the statistic and probability. Enter a value for degrees of freedom. Enter a value in one of the remaining textboxes. Click Calculate to fill in the empty textbox. Statistic ¥ t-score Probability $P(T \le t)$ ¥ **Degrees of freedom** 4 -1.6949t-score 0.08267 $P(T \leq t)$ Calculate

Population Question

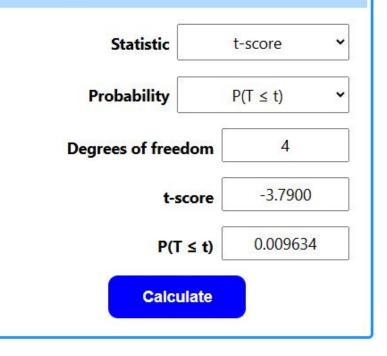
• What is the probability that A is faster than B?

This is a question about the population

• Divide the variance by the sample size

Calculations

```
>> Xw = mean(A) - mean(B)
Xw = 17
>> Sw = sqrt(var(A)/5 + var(B)/5)
Sw = 4.4855
>> t = Xw / Sw
t = 3.7900
```


From StatTrek

• p = 0.009643

There is a 0.96% chance that A is faster than B

- Enter a value for degrees of freedom.
- Enter a value in one of the remaining textboxes.
- Click Calculate to fill in the empty textbox.

Aim Trainer

https://humanbenchmark.com/tests/aim

Is my reaction time better with

- One eye open or
- Two eyes open?

F HUMAN BENCHMARK DASHBOARD

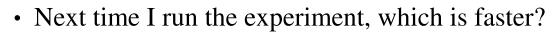
Aim Trainer

Hit 30 targets as quickly as you can. Click the target above to begin.

Step 1: Collect Data

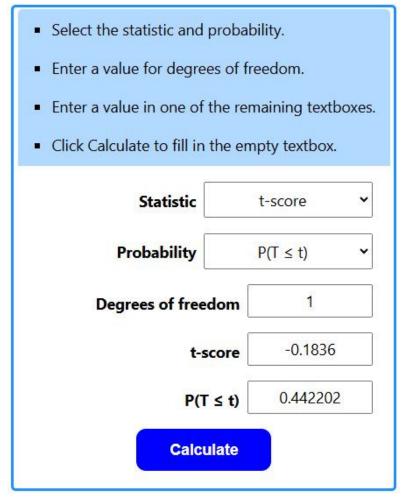
(population A): Record your time to hit 30 targets with both eyes open

Time = $\{992ms, 851ms\}$


(population B): Record your time to hit 30 targets with a different condition (opposite hand,)

Time = $\{973ms, 815ms\}$

Step 2: Analyze Data


Individual Test

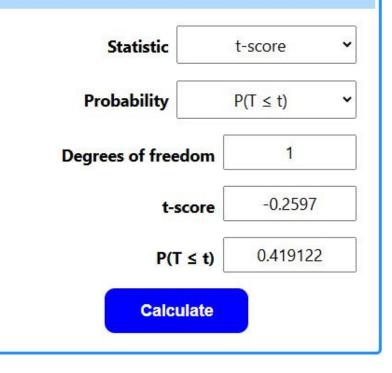

```
>> A = [992, 851];
>> B = [973, 815];
>> Xw = mean(A) - mean(B)
Xw = 27.5000
>> Sw = sqrt(var(A) + var(B))
Sw = 149.7414
>> t = Xw / Sw
t = 0.1836
```

Convert to a probability

- StatTrek
- p = 0.442202
- 44.22% chance I'l be faster with two eyes open next trial

Step 2: Analyze Data

Population Test


• Which one has lower overall average?

```
>> Xw = mean(A) - mean(B)
Xw = 27.5000
>> Sw = sqrt(var(A)/2 + var(B)/2)
Sw = 105.8832
>> t = Xw / Sw
t = 0.2597
```

Convert to a probability

- StatTrek
- p = 0.419122
- 41.91% chance I'm faster with two eyes open

- Select the statistic and probability.
- Enter a value for degrees of freedom.
- Enter a value in one of the remaining textboxes.
- Click Calculate to fill in the empty textbox.

t-Test with >2 Populations

Four people are playing Hungry Hungry Hippo

• What is the chance that A will win the next game?

Population	mean	st dev	df
A	90.00	10.00	5
В	85.00	11.00	6
С	84.00	12.00	3
D	83.00	13.00	7

Option #1: Create three variables

- W1 = A B
- W2 = A C
- W3 = A D

Population	mean	st dev	df
A	90.00	10.00	5
В	85.00	11.00	6
С	84.00	12.00	3
D	83.00	13.00	7
W1 A - B	5.00	14.866	5
W2 A - C	6.00	15.620	3
W3 A - D	7.00	16.401	5

Find the probability A wins each case

Population	mean	st dev	df	t-Score	p(A Wins)
W1 A - B	5.00	14.866	5	0.3363	0.62485
W2 A - C	6.00	15.620	3	0.3841	0.63641
W3 A - D	7.00	16.401	5	0.4286	0.65697

Multiply all three probabilities together

Note: This probability is low

- This is actually the odds that A defeats each other play one at a time
 - A runs the gauntlet of player B then C then D
- The odds that A wins a single game against three oponents is higher.

Option #2: Combine B, C, & D

- A's score is more than the max(B, C, D)
- Create a new variable, F = max(B, C, D)

You now have two variables (A & F)

• Problem has been previously solved

Game	Player A	max(B, C, D)	Player B	Player C	Player D
1	95	95	89	95	89
2	95	98	98	80	76
3	73	103	93	80	103
4	89	82	76	82	64
5	86	86	86	66	84
6	101	100	68	100	82
mean	89.8333	94.00			
st dev	9.7656	8.2704			

The probability of A winning any given game is then

$$t = \left(\frac{x_a - x_f}{\sqrt{s_a^2 + s_f^2}}\right) = -0.3256$$

6 games means 5 degrees of freedom

p = 0.37896

Player A has a 37.896% chance of winning any given game

• vs. 26.13% if A had to run the gauntlet

Option #3

Run a Monte-Carlo simulation to find the pdf for max(B, C, D)

```
>> B = 11*randn(1000,1) + 85;
>> C = 12*randn(1000,1) + 84;
>> D = 13*randn(1000,1) + 83;
>> F = max([B,C,D]')';
>> Xf = mean(F)
Xf = 94.2967
>> Sf = std(F)
Sf = 8.8662
```

Option #4: Run a Monte-Carlo Simulation

```
Wins = 0;
for n=1:1e5
    A = 10*randn + 90;
    B = 11*randn + 85;
    C = 12*randn + 84;
    D = 13*randn + 83;
    if(A > max([B,C,D])) Wins = Wins + 1; end
end
Wins / 1e5
>> ans = 0.3810
```

A has a 38.10% chance of winning any given game

Option #5: ANOVA

Student t-Tests are just one type of statistical test

- Assumes a single population
- You can play with the data to make it work with 2 populations

There are statistical tests design for more than 2 populations

- Analysis of Variance is one such test
- Coming soon...

Summary

With a t-test, you can compare two populations

- Create a new variable, W = A B
- Determine the probability that W > 0

Only really works with two populations

- If you have more than two populations, you need a different tool
- ANOVA is one such tool (upcoming....)