NDSU Properties of z-Transform

ECE 343

Properties of z-Transform

Properties of z-Transforms
Linearity:  ax(k) + by(k) <> aX(z) + bY(2)

Time Delay: X(k—1) <> (%) X(2)

Convolution:  X(K) * *y(K) = X(2)Y(2)
Initial Value: X(0) =!I_>rpo (X(2))

Final Value:  X(00) :Iinz (z-1D)X(2))

Proofs
Linearity:  ax(k) + by(k) <> aX(z) + bY(2)

Proof:

Z(ax(k) + by(k)) = é z7"(ax(n) + by(n))
= i z"ax(n) +z"by(n)
n=0

=a i z7"(n)+b i y(n)
n=0 n=0

=aX(z) +bY(2)

Time Delay:  X(k—1) <> 271X(2)

Proof:
Z(x(k—1)) = io z"(x(n — 1))

Do a change in variable:

m=n-1
= >, z7™MDx(m)= D z71z7™x(m)
m=-1 m=0

=7"X(©2)
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Convolution: Y, X(K—n)y(n) = X(2)Y(2)
n=0
Proof :
X@)Y (@)= Xo+2 X1 +22X2 + 23Xz + ..) (Yo +27y1 +272y2 +273y5 + ..))

= % XnkYkZ ™"

= x(k) * y(K)

Initial Value: X(0) =!I_>rl10 (X(2))

Proof: Express x(k) as

=n0+ () (2)+(2)

ASZ— ©

X(k) = x(0)

Final Value:  X(00) :Iin? (z—-1)X(2))

Proof: Do a partial fraction expansion of X(z)

X(z) = (ﬁ) + (%) + o

The inverse-z transform will be
x(ky=a+b-ck+..

As k goes to infinity, all terms go to zero (assuming the system is stable) except for the first term. The way you
find 'a’ using partial fractions is

a=lm(z-1)-X@)
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z-Transforms and Markov Chains
A Markov chain is a discrete-time function of the form
x(k+ 1) = Ax(K)
with an initial condition, X(0). For example, assume three people are tossing a ball around. Every 1 second, the

ball is tossed:

Player #1
Keeps the ball 10% of the time
Passes it to player #2 50% of the time, and
Passes to player #3 40% of the time.
Player #2
Passes the ball to player #1 80% of the time, and
Passes the ball to player #3 20% of the time.
Player #3
Passes the ball to player #2 20% of the time, and
Keeps the ball 80% of the time.

A description of this game is

0108 0
X(k+1)=| 05 0 0.2 [x(k)
0.4 0.2 0.8

Note that the columns add up to 1.00: every second the ball goes somewhere with a probability of 1.00. The
entries for the 1st column are where the ball goes if player #1 has the ball, the second column is where the ball
winds up if player #2 has the ball, etc.

In terms of z-transforms:
0108 0

zX=1 05 0 02 X
0.4 0.2 0.8

The final value theorem tells you who has the ball as time goes to infinity:

0108 0
X=105 0 02 X
04 0.20.38

meaning X is the eigenvector associated with the eigenvalue of 1.000
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>> [m,Vv] eig(A)

0.7636  -0.5491 0.2883
-0.6322  -0.2487 0.3243
-0.1314 0.7979 0.9009

-0.5623 0 0
0 0.4623 0
0 0 1.0000

The third eigenvector is proportional to the probability that any given player has the ball. All probabilities have
to add to one, however. So.

>V = m(:,3)

0.2883
0.3243
0.9009

>> V / sum(V)

0.1905
0.2143
0.5952

As k goes to infinity

« The probability that player #1 has the ball is 0.1905
- The probability that player #2 has the ball is 0.2143
- The probability that player #3 has the ball is 0.5952

You can also get this result by passing the ball a large number of times
>> A”N1000

0.1905 0.1905 0.1905
0.2143 0.2143 0.2143
0.5952 0.5952 0.5952

Example 2: Two people are playing tennis. Player #1 has a 60% change of winning any given game. The
match is over when one player is up two games. What is the probability that player #1 will win the match?

Solution: This too is a Markov chain. If you define the states to be

X2 up 2 games
X1 up 1 game
X= Xo | = tied
X_1 down 1 game
| X2 | [ down 2 games
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then

Xk+1 =

106 0 00
000600
004 0 060
000400
(00 0041 |

Xk

( If you're up one game after k games (column #2), then
- There is a 60% chance you'll be up 2 games after the next game

« There is a 40% chance you'll be even after the next game.

From the final value theorem:

(zX),, =

106 0 0 O
0 006 0O
004 0 060 [Xk
0 00400
00 0 041
The eigenvector associated with A = 1 is

1 0

0 0

0l O

0 0

0 [1

which doesn't help: the final value is either you win (+2 games) or you lose (-2 games), or some combination
thereof. Another solution is to play the game a bunch of times (like 1000 times)

>> AN0

1.0

00

000 0.8769 0.6923 0.4154
0] 0.0000 0] 0.0000
0] 0] 0.0000 0]
0] 0.0000 0 0.0000
0] 0.1231 0.3077 0.5846

If you start out even (column #3),

« Player #1 has a 69.23% chance of winning the match
« Player #2 has a 30.77% chance of winning the match

If you give odds by giving player #2 a win (column #3)

- Player #1 has a 41.54% chance of winning
- Player #2 has a 58.46% chance of winning.
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z-Transform and Moment Generating Functions

In statistics, they're called Moment Generating Functions. In ECE, they're called z-tansforms.

Problem:

+ Let X be the number of times you have to roll a 10-sided die until you roll a 1.
« Then, roll a 4-sided die until you get X ones.
- Let N be the total number of times you roll the dice.

What is the probability distribution of N?

Solution: If you solve in the time-domain (or k domain), you need to use convolution. If you solve in the

z-domain, you use multiplication.

The probability distribution of x(k) is
x(K)=0.1-0.9%1 k>0

This is an exponential distribution with a z-transform (or moment generating function if you're a statistics major)

of

X(z) = (%)

The probability distribution of y(k) is
y(k)=0.25-(0.75)** k>0

which has the z-transform of

Y@ = (25

The convolution of x(k) and y(K) is the product of X(z) and Y (z)

N@) = X@) - Y(@)

N= () ()

Taking the partial fraction expansion

__ [ 0.1666 —0.1666
N = ( 7-0.9 ) + ( 7-0.75 )

resulting in

= (3)((om) + (24))
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(k) = (1) (2225 (k)

n(k) = (M) uk —1)
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Numer of Die Rolls (n)

n(k): Probability of Rolling the dice k times
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