ECE 376 - Homework #3

Binary Inputs

A thermistor has the following temperature - resistance relationship:

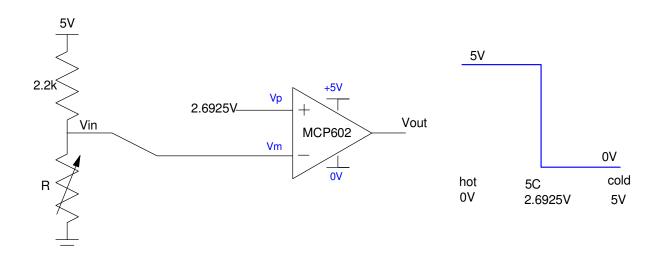
$$R = 1000 \cdot \exp\left(\frac{3905}{T + 273} - \frac{3905}{298}\right) \Omega$$

where T is the temperature in degrees C.

- 1) Design a circuit which outputs
 - 0V when T < 5C
 - 5V when T > 5C

First, compute the resistance at 5C

$$R = 2566.99\Omega$$


Next, pick your favorite voltage divider. Assume a 2.2k resistor and a 5V source

$$V_{in} = \left(\frac{R}{R + 2000}\right) 5V$$

$$V_{in} = 2.6925V$$

Finally, connect this to a comparitor. For the plus/minus inputs, pick whichever one results in T>5C (rather than T<5C). This works out to the minus input

- As T goes to infinity, R goes to zero
- · Vin goes to zero
- Vout goes to 5V

2) Design a circuit which outputs

- 0V when T < 0C
- 5V when T > 5C
- No change for 0C < T < 5C

At 0C

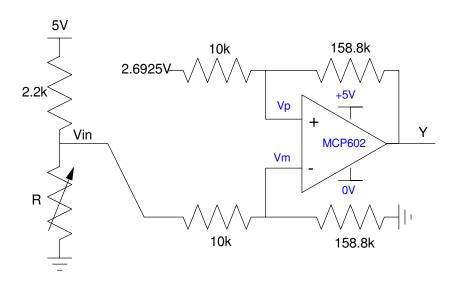
- R = 3320.12 Ohms
- Vin = 3.0073V V(off)
- Vout = 0V

At 5C

- R = 2566.99 Ohms
- Vin = 2.6925V V(on)
- Vout = 5V

V(on) < V(off) so connect to the minus input

$$V(on) = 2.6925V$$


The gain required is

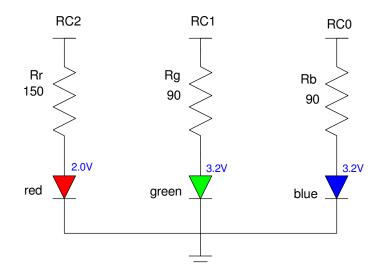
$$gain = \left(\frac{\text{change in output}}{\text{change in input}}\right)$$

$$gain = \left(\frac{5V - 0V}{3.0073V - 2.6925V}\right)$$

$$gain = 15.88$$

Set the resistor ratio to 15.88:1

Binary Outputs

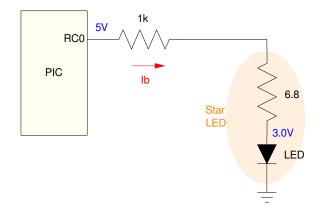

3) Design a circuit which allows your PIC board to turn on and off an RGB Piranah LED at 0mA (off) and 20mA (on). Assume the specifications for the LEDs are:

Color	Vf @ 20mA	mcd @ 20mA
red	2.0V	10,000
green	3.2V	10,000
blue	3.2V	10,000

$$R_r = \left(\frac{5V - 2.0V}{20mA}\right) = 150\Omega$$

$$R_g = \left(\frac{5V - 3.2V}{20mA}\right) = 90\Omega$$

$$R_b = \left(\frac{5V - 3.2V}{20mA}\right) = 90\Omega$$

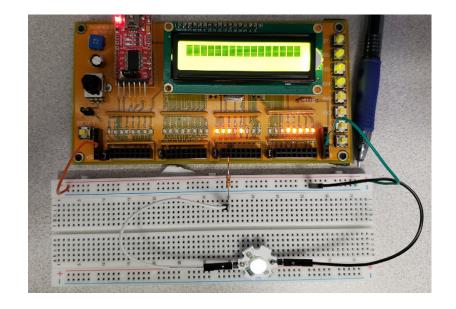


1W Star LED

- 4) The star LED in your lab kit is a 1W white LED in series with 6.8 Ohms.
 - Vf = 3.0V @ 330mA
 - 200LM @ 330mA
- a) Set up the following circuit so your PIC board can turn the LED on/off
 - The 200 Ohm resistor limits the current (200 to 1k works)
- b) Compute the
 - · Current to the LED
 - The brightness of the LED

$$I_b = \left(\frac{5V - 3.0V}{1k + 6.8}\right) = 1.986mA$$

$$Light = \left(\frac{1.986mA}{330mA}\right) 200LM = 1.2 \text{ lumens}$$


c) Build this circuit and measure

Id (the current through the LED)

- I(1k) = 2.438V
- Id = 2.439mA
- LED is on but dim

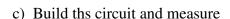
Vf (the voltage drop across the LED):

- · Measured across the LED
- Vf = 2.623V
- (slightly less than the 3.00V @ 330mA from the data sheets. Vf changes slightly with current)

- 5) Use a 6144 NPN transistor as an electronic switch to turn on and off the LED (and amplify current).
 - Ic(max) = 3A (Ib(max) = 25mA the max output of a PIC)
 - hfe () > 200
- a) Set up the following circuit so that your PIC board can turn on and off the LED
- b) Compute
 - The currents Ib and Ic and
 - The brightness of the LED

$$I_b = \left(\frac{5V - 0.7V}{1k}\right) = 4.3mA$$

$$I_c = \left(\frac{5V - 3.0V - 0.2V}{6.8\Omega}\right) = 264.7 mA$$

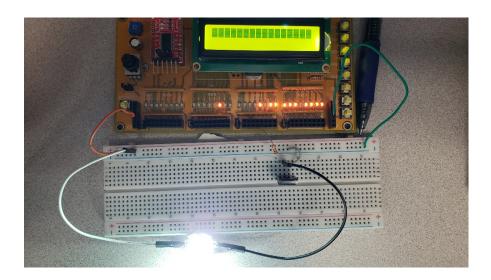

Is is saturated?

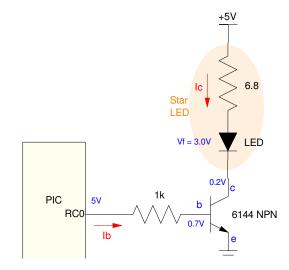
$$\beta I_b > I_c$$

$$200 \cdot 4.3 mA > 264.7 mA$$

Yes, the transistor is saturated (meaning Vce = 0.2V (ish))

$$L = \left(\frac{264.4mA}{330mA}\right) 2000LM = 160.4$$
 lumens




Id (hint: measure the voltage across the 6.8 Ohm resistor on the LED)

- Vr = 1.566V
- Ir = Vr / 6.8 = 230.3 mA (really bright)

Vf (the voltage drop across the LED)

• 3.138V

Timing:

- 5) Write a program which outputs the music note G2 (98.00 Hz)
 - Verify the frequency of the square wave you generate
 - (Pano Tuner app on you cell phone works well for this)
- 98 Hz gives a wait loop of

$$N = \left(\frac{10,000,000}{2 \cdot Hz}\right) = 51,020.04 \text{ clocks}$$

```
#include <p18f4620.inc>
; Variables
CNTO EQU 1
CNT1 EQU 2
; Program
   org 0x800
   call Init
Loop:
  incf PORTC, F
  call Wait
   goto Loop
; --- Subroutines ---
Init:
   clrf TRISA
   clrf TRISB
   clrf TRISC
   clrf TRISD
   clrf TRISE
   movlw 0x0F
   movwf ADCON1
   return
; Wait 51,020 clocks (actual wait time is 51,260 clocks
Wait:
   movlw 51
   movwf CNT1
W1:
         movlw 100
         movwf CNT0
W0:
               nop
               nop
               nop
               nop
               nop
               nop
               decfsz CNT0, F
               goto W0
         decfsz CNT1, F
         goto W1
   return
   end
```

Using Pano Tuner, the actual freuqucy is 97.6Hz

Lab: 4 Key Sharp Piano

Requirements:

• Inputs: Buttons on RB0 / RB1 / RB2 / RB3

• Outputs: RC0

• Relationship: Output a square wave on RC0 based upon the button pressed:

RB0 F#3 185.00 HzRB1 G#3 207.65 Hz

- RB2 A#3 223.08 Hz

- RB3 C#4 277.18 Hz

6) Analysis, Code, and Flow Chart. Give computations for resistor values (if any), timing, assembler code, and a flow chart for your code

The number of clocks needed for each note are:

$$N = \left(\frac{10,000,000}{2 \cdot Hz}\right)$$

N is created using a series of loops:

$$N = 5AB + 5B + 5 + 13$$
 (main routine = 13 clocks)

185Hz:

• N = 27,027

•
$$A = 36$$
, $B = 146$, $N = 27028$

207.65 Hz:

• N = 24,079

•
$$A = 28$$
, $B = 166$, $N = 24088$

233.08 Hz

• N = 21,452

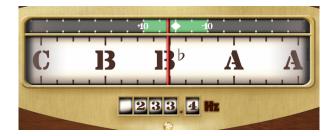
•
$$A = 31$$
, $B = 134$, $N = 21458$

277.18 Hz

• N = 18,038

•
$$A = 16$$
, $B = 212$, $N = 18,038$


Code & Flow Chart


```
; Program
   org 0x800
   call Init
Loop:
        movlw 0
         cpfseq PORTB; if any button is pressed
   btg PORTC, 0
   btfsc PORTB, 0
    call B0
   btfsc PORTB, 1
   call B1
   btfsc PORTB, 2
   call B2
   btfsc PORTB, 3
   call B3
   goto Loop
; --- Subroutines ---
Init:
   clrf TRISA
                   ;PORTA is output
    movlw 0xFF
   movwf TRISB ;PORTB is input clrf TRISC ;PORTC is output clrf TRISD ;PORTD is output clrf TRISE ;PORTE is output movlw 0x0F
   movlw 0x0F
   movwf ADCON1 ; everyone is binary
   return
B0:
   movlw 21
   movwf CNT1
B0a:
   movlw 164
   movwf CNT0
B0b:
   nop
   nop
   decfsz CNTO, F
   goto B0b
   decfsz CNT1, F
   goto B0a
   return
B1:
   movlw 28
   movwf CNT1
Bla:
   movlw 166
   movwf CNT0
B1b:
   nop
   nop
   decfsz CNTO, F
   goto B1b
   decfsz CNT1, F
   goto Bla
   return
B2:
   movlw 31
```

```
movwf CNT1
B2a:
   movlw 134
   movwf CNT0
B2b:
  nop
  nop
  decfsz CNTO, F
  goto B2b
  decfsz CNT1, F
  goto B2a
  return
в3:
  movlw 16
  movwf CNT1
B3a:
  movlw 212
  movwf CNT07
B3b:
  nop
  nop
   decfsz CNTO, F
   goto B3b
   decfsz CNT1, F
  goto B3a
   return
   end
```

- 8) Validation: Collect data in the lab to verify your code works.
 - For a binary clock, is it counting once per second?
 - For the dice, are the results random? Is the beep 220Hz? Is it 1 second?
 - For the piano, is each note correct in frequency?

Frequency	Hz	Measured	Error (%)
F#3	185.00 Hz	185.3Hz	+0.162%
G#3	207.65 Hz	207.9Hz	+0.120%
A#3	223.08 Hz	233.4Hz	+0.137%
C#4	277.18 Hz	277.4Hz	+0.079%

9) Demonstration: Demonstrate that your embedded system works (either in person or with a video)