
ECE 376 - Homework #4

C - LCD Displays - Keypads

1) Determine how many clocks the following C code takes to execute

Compile and download the code (modify working code and replace the main loop)

Measure the frequency you see on RC0 (toggles every loop).

- Use an osiclloscope - or -

- Connect a speaker to RC0 with a 200 Ohm resistor and measure the frequency with a cell phone app

like Piano Tuner

- RC1 is 1/2 the frequency of RC0, RC2 is 1/4th, RC3 = 1/8th, etc

The number of clocks it takes to execute each loop is

N =



10,000,000

2⋅Hz




1a) Counting mod 256

- note: if using your cell phone to measure the frequency, you might have to try different pins on

PORTC until you get one in the audio range. Each pin is 1/2 the frequency of the previous pin

unsigned char i
while(1) {
 i = (i + 1)% 256;
 if(i == 0) PORTC += 1;
 }

f = 1302.8Hz

N = 3837.89 clocks

N/ 256 = 14.992 (15)

It takes 15 clocks to count mod 256

1b) Counting mod 255

unsigned char i
while(1) {
 i = (i + 1)% 255;
 if(i == 0) PORTC += 1;
 }

f = 41.1 Hz

N = 121,654 clocks

N / 255 = 477.07

It takes 477 clocks to count mod 255

1c) Integer Multiply

 unsigned int A, B, C;
 unsigned char i;

A = 0x1234;
B = 0x5678;
while(1) {

 i = (i + 1)% 256;
 if(i == 0) PORTC += 1;
 C = A*B;
 }

 f = 42.3Hz

N = 118,203

N / 256 = 461.7

- 15 clocks to count mod 256

- plus 447 clocks to do an integer multiply

It taekes 467 (ish) clocks to do an integer multiply

1d) Floating point multiply

float A, B;
A = 1.0002;
B = 0.02;
while(1) {

 i = (i + 1)% 256;
 if(i == 0) PORTC += 1;
 B = B * A;
 }

f = 85.3Hz

N = 58,616.6

N / 256 = 228.97 (229 clocks)

- 15 clocks to count mod 256

- plus 214 clocks to do a floating point multiply

Master-Mind

In the game of Master-Mind, you try to guess a secret code

At the start of the game, a random 4 digit number is selected (each digit can be 0..6)

Each round, you guess what the 4-digit code is

The computer then looks at the code, digit by digit.

If the number in the code is also in the guess but wrong spot, the player scores 1 point.

If the number in the code is also in the guess but right spot, the player scores 10 points.

The game continues until the player gets all 4 digits correct (and scores 40 points)

2) Write a C program which starts the game

Start the game by pressing RB0

This generates a random 4-digit number from 0000 to 5555 (all digits 0..5)

Verify your code.

Code

 while(1) {

 // generate code
 while(!RB1);
 while(RB1) {
 X = (X + 1) % 1296;
 }

 c0 = X % 6;
 X = X / 6;
 c1 = X % 6;
 X = X / 6;
 c2 = X % 6;
 X = X / 6;
 c3 = X % 6;
 CODE = c3*1000 + c2*100 + c1*10 + c0;

 LCD_Move(0,6);
 LCD_Out(CODE, 4, 0);

 }

Codes

0 4 5 3
0 1 5 2
5 4 4 1
2 3 4 0

Comments:

Each digit is in the range of 0-5

Results appear to be random

3) Add to this code the user inputting a 4-digit guess using the numeric keypad (0000 to 5555)

Display the guess on the LCD display

Verify your code

 while(1) {
 TEMP = ReadKey();

 if (TEMP < 10) X = (X*10) + TEMP;

 if (TEMP == 10) {
 GUESS = X;
 SCORE = Compute_Score(CODE, GUESS);
 }

 if (TEMP == 11) {
 X = X / 10;
 }

 LCD_Move(1,6); LCD_Out(X, 4, 0);
 LCD_Move(1,13); LCD_Out(SCORE, 2, 0);

 Wait_ms(100);

 }

Comments:

As you type in numbers, they appear on the screen (X)

You can remove a number by hitting #

You can submit your guess by pressing *

4) Add to this code calculations of the player's score

Check each number one-by-one

If the number in the code is also in the guess but wrong spot, the player scores 1 point.

If the number in the code is also in the guess but right spot, the player scores 10 points.

Verify your code

unsigned int Compute_Score(unsigned int CODE, unsigned int GUESS) {
 unsigned int SCORE, i, j, p;
 unsigned int C[4], G[4];

 SCORE = 0;

 for(i=0; i<4; i++) {
 C[i] = CODE % 10;
 CODE = CODE / 10;
 G[i] = GUESS % 10;
 GUESS = GUESS / 10;
 }

 for (i=0; i<4; i++) {
 p = 0;
 for(j=0; j<4; j++)
 if(C[i] == G[j])
 p = 1;
 if(C[i] == G[i]) p = 10;
 SCORE = SCORE + p;
 }

return(SCORE);
 }

Comment

Scoring looks correct (trying several guesses and checking the score)

5) Add to this code a loop where you keep playing until the player scores 40 points

All 4 digits correct

 while(1) {

 // generate code
 while(!RB1);
 while(RB1) {
 X = (X + 1) % 1296;
 }

 c0 = X % 6;
 X = X / 6;
 c1 = X % 6;
 X = X / 6;
 c2 = X % 6;
 X = X / 6;
 c3 = X % 6;
 CODE = c3*1000 + c2*100 + c1*10 + c0;

 SCORE = 0;
 N = 0;
 while(SCORE < 40) {
 TEMP = ReadKey();

 if (TEMP < 10) X = (X*10) + TEMP;

 if (TEMP == 10) {
 N = N + 1;
 GUESS = X;
 SCORE = Compute_Score(CODE, GUESS);
 }

 if (TEMP == 11) {
 X = X / 10;
 }

 LCD_Move(1,6); LCD_Out(X, 4, 0);
 LCD_Move(1,13); LCD_Out(SCORE, 2, 0);
 LCD_Move(0,13); LCD_Out(N, 2, 0);

 if(SCORE == 40) {
 LCD_Move(0,6);
 LCD_Out(CODE, 4, 0);
 Wait_ms(2000);
 }
 }

 }

Resulting Code: 2937 lines of assembler (5874 bytes)

Memory Summary:
 Program space used 16F2h (5874) of 10000h bytes (9.0%)
 Data space used 42h (66) of F80h bytes (1.7%)
 EEPROM space used 0h (0) of 400h bytes (0.0%)
 ID Location space used 0h (0) of 8h nibbles (0.0%)
 Configuration bits used 0h (0) of 7h words (0.0%)

6) Demo your resulting Master-Mind game

In-person or on a video

notes:

This is an example of top-down programming

- Start with the framework of the program

- Start with the display routine so you can see what's happening

- Add routines / features one by one

- Check the routines each step of the way

C makes this program a lot easier to write and debug

Displaying the code while playing makes debugging easier

Hiding the code and having you figure it out makes the game more challenging.

Final Code

// Master-Mind

// Global Variables

const unsigned char MSG0[21] = "Code: ";
const unsigned char MSG1[21] = "Guess: ";

// Subroutine Declarations
#include <pic18.h>

// Subroutines
#include "lcd_portd.c"

char GetKey(void)
{
 int i;
 unsigned char RESULT;
 TRISC = 0xF8;
 RESULT = 0xFF;
 PORTC = 4;
 for (i=0; i<100; i++);
 if (RC6) RESULT = 1;
 if (RC5) RESULT = 4;
 if (RC4) RESULT = 7;
 if (RC3) RESULT = 10;
 PORTC = 2;
 for (i=0; i<100; i++);
 if (RC6) RESULT = 2;
 if (RC5) RESULT = 5;
 if (RC4) RESULT = 8;
 if (RC3) RESULT = 0;
 PORTC = 1;
 for (i=0; i<100; i++);
 if (RC6) RESULT = 3;
 if (RC5) RESULT = 6;
 if (RC4) RESULT = 9;
 if (RC3) RESULT = 11;
 PORTC = 0;
 return(RESULT);
}

char ReadKey(void)
{
 char X, Y;
 do {
 X = GetKey();
 } while(X > 20);
 do {
 Y= GetKey();
 } while(Y < 20);
 Wait_ms(100); // debounce
 return(X);
 }

unsigned int Compute_Score(unsigned int CODE, unsigned int GUESS) {
 unsigned int SCORE, i, j, p;
 unsigned int C[4], G[4];

 SCORE = 0;

 for(i=0; i<4; i++) {
 C[i] = CODE % 10;
 CODE = CODE / 10;
 G[i] = GUESS % 10;
 GUESS = GUESS / 10;
 }

 for (i=0; i<4; i++) {
 p = 0;
 for(j=0; j<4; j++)
 if(C[i] == G[j])

 p = 1;
 if(C[i] == G[i]) p = 10;
 SCORE = SCORE + p;
 }

return(SCORE);
 }

// Main Routine

void main(void)
{
 unsigned int i, j;
 int CODE, GUESS, SCORE;
 int X, TEMP, N;
 int c0, c1, c2, c3;

 TRISA = 0;
 TRISB = 0xFF;
 TRISC = 0xF8;
 TRISD = 0;
 TRISE = 0;
 TRISA = 0;
 ADCON1 = 15;

 PORTA = 0;

 LCD_Init(); // initialize the LCD

 LCD_Move(0,0); for (i=0; i<20; i++) LCD_Write(MSG0[i]);
 LCD_Move(1,0); for (i=0; i<20; i++) LCD_Write(MSG1[i]);

 while(1) {

 // generate code
 while(!RB1);
 while(RB1) {
 X = (X + 1) % 1296;
 }

 c0 = X % 6;
 X = X / 6;
 c1 = X % 6;
 X = X / 6;
 c2 = X % 6;
 X = X / 6;
 c3 = X % 6;

 CODE = c3*1000 + c2*100 + c1*10 + c0;

 LCD_Move(0,7);
 LCD_Write('x');
 LCD_Write('x');
 LCD_Write('x');
 LCD_Write('x');

 SCORE = 0;
 N = 0;
 while(SCORE < 40) {
 TEMP = ReadKey();

 if (TEMP < 10) X = (X*10) + TEMP;

 if (TEMP == 10) {
 N = N + 1;
 GUESS = X;
 SCORE = Compute_Score(CODE, GUESS);
 }

 if (TEMP == 11) {
 X = X / 10;
 }

 LCD_Move(1,6); LCD_Out(X, 4, 0);
 LCD_Move(1,13); LCD_Out(SCORE, 2, 0);
 LCD_Move(0,13); LCD_Out(N, 2, 0);

 if(SCORE == 40) {
 LCD_Move(0,6);
 LCD_Out(CODE, 4, 0);
 Wait_ms(2000);
 }
 }

 }

 }

