
ECE 376 - Homework #11
z-Transforms and Digital Filters.    Due Friday, April 21st

Please email to jacob.glower@ndsu.edu, or submit as a hard copy, or submit on BlackBoard

1) Assume X and Y are related by the following transfer function

Y = 


5(s+2)

(s2+4s+30)


X

a)  What is the differential equation relating X and Y?

Cross multiply

(s2 + 4s + 30)Y = 5(s + 2)X

'sY' means 'the derivative of y'

y + 4y + 30y = 5x + 10x

b)  Find y(t) assuming

x(t) = 6 + 5 sin(4t)

Use superposition

x(t) = 6

s = 0

X = 6

Y = 


5(s+2)

(s2+4s+30)




s=0

⋅ (6)

Y = 2

x(t) = 5 sin(4t)

s = j4

X = 0 - j5 real = cosine, -imag = sine

Y = 


5(s+2)

(s2+4s+30)




s=j4

⋅ (0 − j5)

Y = 1.3274 − j5.0885

real = cosine, -imag = siney(t) = 1.3274 cos(4t) + 5.0885 sin(4t)

The total answer is DC + AC

y(t) = 2 + 1.3274 cos(4t) + 5.0885 sin(4t)



2)  Assume X and Y are related by the following transfer function

Y = 


0.01(z+1)

(z−0.96)(z−0.9)


X

a)  What is the difference equation relating X and Y?

Cross multiply

(z2 − 1.86z + 0.864)Y = 0.01(z + 1)X

note that zX means x(k+1)

y(k + 2) − 1.86y(k + 1) + 0.864y(k) = 0.01(x(k + 1) + x(k))

or doing a time shift (change of variable)

y(k) − 1.86y(k − 1) + 0.864y(k − 2) = 0.01(x(k − 1) + x(k − 2))

either answer is valid.

b)  Find y(t) assuming a sampling rate of T = 0.01 second

x(t) = 6 + 5 sin(4t)

Use superposition

x(t) = 6

s = 0

z = exp(sT) = 1

X = 6

Y = 


0.01(z+1)

(z−0.96)(z−0.9)




z=1

⋅ (6)

Y = 30

x(t) = 5 sin(4t)

s = j4

z = exp(sT) =  = 0.9992 + j0.04001∠0.04

X = 0 - j5

Y = 


0.01(z+1)

(z−0.96)(z−0.9)




z=1∠0.04

⋅ (0 − j5)

Y = −15.2944 − j6.6882

y(t) = −15.2944 cos(4t) + 6.6882 sin(4t)

The total answer is DC + AC

y(t) = 30 − 15.2944 cos(4t) + 6.6882 sin(4t)



Problem 3)  Assume G(s) is a low-pass filter with real poles:

G(s) = 


100

(s+4)(s+5)(s+6)




3)  Design a digital filter, G(z), which has approximately the same gain vs. frequency as G(s).  Assume a

sampling rate of T = 0.01 second.

s = −4 z = esT = 0.9608

s = −5 z = esT = 0.9512

s = −6 z = esT = 0.9418

So, G(z) is of the form

G(z) = 


k

(z−0.9608)(z−0.9512)(z−0.9418)




To find k, match the DC gain

G(s = 0) = 


100

(s+4)(s+5)(s+6)




s=0

= 0.8333

Pick 'k' so that G(z) has the same DC gain

G(z = 1) = 


k

(z−0.9608)(z−0.9512)(z−0.9418)




z=1

= 0.8333

k = 0.0000928

and

G(z) = 


0.0000928

(z−0.9608)(z−0.9512)(z−0.9418)




Plot the gain vs. frequency for both filters from 0 to 50 rad/sec.

>> w = [0:0.01:50]';
>> s = j*w;
>> T = 0.01;
>> z = exp(s*T);
>> Gs = 100 ./ ( (s+4).*(s+5).*(s+6) );
>> Gz = 0.0000928 ./ ( (z-0.9608).*(z-0.9512).*(z-0.9418) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r');
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain');



G(s) (blue) and G(z) (red)

The gain vs. frequency is the same:  it's the same filter



Problem 4)  Assume G(s) is the following band-pass filter:

G(s) = 


30s

(s+2+j15)(s+2−j15)




Design a digital filter, G(z), which has approximately the same gain vs. frequency as G(s).  Assume a

sampling rate of T = 0.01 second.

s = 0 z = esT = 1

s = −2 + j15 z = esT = 0.9692 + j0.1465

s = −2 − j15 z = esT = 0.9692 − j0.1465

So, the form of G(z) is

G(z) = 


k(z−1)

(z−0.9692+j0.1465)(z−0.9692−j0.1465)




To find k, match the gain somewhere.  The DC gain is zero, so pick somewhere else (like s = j15)

G(s = j15) = 


30s

(s+2+j15)(s+2−j15)




s=j15

= 7.4834

G(z = esT) = 


k(z−1)

(z−0.9692+j0.1465)(z−0.9692−j0.1465)




z=1∠0.15

= 7.4834

k = 0.2932

G(z) = 


0.2932(z−1)

(z−0.9692+j0.1465)(z−0.9692−j0.1465)




Plot the gain vs. frequency for both filters from 0 to 50 rad/sec.

>> w = [0:0.01:50]';
>> s = j*w;
>> T = 0.01;
>> z = exp(s*T);
>> Gs = 30*s ./ ( (s+2+j*15).*(s+2-j*15) );
>> Gz = 0.2932*(z-1) ./ ( (z-0.9692+j*0.1465).*(z-0.9692-j*0.1465) );
>> plot(w,abs(Gs),'b',w,abs(Gz),'r');
>> xlabel('Frequency (rad/sec)');
>> ylabel('Gain');



G(s) (blue) & G(z) (red)

The two filters have the same gain vs. frequency:  they're the same filter.



Problem 5)  Write a C program to implement the digital filter, G(z)

Y = 


0.2932(z−1)

(z−0.9692+j0.1465)(z−0.9692−j0.1465)


X

Multiply out

Y =





0.2932(z−1)


z

2−1.9384z+0.9608




X

Cross multiply

(z2 − 1.9384z + 0.9608)Y = 0.2932(z − 1)X

y(k + 2) − 1.9384y(k + 1) + 0.9608y(k) = 0.2932(x(k + 1) − x(k))

Do a time shift (or a change of variable)

y(k) − 1.9384y(k − 1) + 0.9608y(k − 2) = 0.2932(x(k − 1) − x(k − 2))

Solve for y(k)

y(k) = 1.9384y(k − 1) − 0.9608y(k − 2) + 0.2932(x(k − 1) − x(k − 2))

That's essentially your program

while(1) {
   x2 = x1;
   x1 = x0;
   x0 = A2D_Read(0);

   y2 = y1;
   y1 = y0;
   y0 = 1.9384*y1 - 0.9608*y2 + 0.2932*(x1 - x2);

   D2A(y0);

   Wait_ms(10);

   }



Filters & Range Measurement

In Matlab, create data to represent ultrasonic range sensor readings at a distance of 100mm:

mm = 100 + 3*randn(1000,1);

6)  For the raw data (mm), determine

The mean

The standard deviation

The 90% confidence interval for the next reading.

>> x = 100 + 3*randn(1000,1);
>> k = [1:1000]';

>> Xx = mean(x);
>> Xx = mean(x)

Xx =  100.0820

>> Sx = std(x)

Sx =    2.9861

>> X2 = Xx + 1.64*Sx

X2 =  104.9791

>> X0 = Xx - 1.64*Sx

X0 =   95.1848

>> plot(k,x,'b',k,0*k+X2,'m--',k,0*k+X0,'m--')
>> xlabel('Sample Number');
>> ylabel('mm');

Raw Data (x) Along with the 90% Confidence Interval



7)  Filter the data with a FIR filter (the average of the last five data points)

Y = 


1

5



1 +

1
z +

1

z2
+

1

z3
+

1

z4


X

For the filtered data (y), determine

The mean of y

The standard deviation of y

The 90% confidence interval for the next value of y

Also plot the filtered data, y(k)

>> x = 100 + 3*randn(1000,1);
>> y = 0*x;
>> y(1:4) = 100;
>> for k=5:1000
      y(k) = mean(x(k-4:k));
      end
>> k = [1:1000]';

>> Xy = mean(y)

Xy =   99.8276

>> Sy = std(y)

Sy =    1.3865

>> Y0 = Xy - 1.64*Sy

Y0 =   97.5538

>> Y2 = Xy + 1.64*Sy

Y2 =  102.1015

>> plot(k,y,'b',k,0*k+Y2,'m--',k,0*k+Y0,'m--')
>> xlabel('Sample Number');
>> ylabel('Distance (mm)')

FIR Filterd Data & 90% Confidence Interval



8)   Filter the data with the following low-pass filter:

s-plane, poles at s = -2 +/- j2Y = 


8

s2+4s+8


X

same filter in the z-plane with T = 10msY = 


0.0008

z2−1.9600z+0.9608


X

In Matlab:

>> x = 100 + 3*randn(1000,1);
>> y = 0*x;
>> y(1:2) = 100;
>> for k=3:1000
    y(k) = 1.9600*y(k-1)-0.9608*y(k-2)+0.0008*x(k-2);
    end
>> k = [1:1000]';
 
>> Xy = mean(y)
Xy =  100.0203

>> Sy = std(y)
Sy =    0.2647

>> Y0 = Xy - 1.64*Sy
Y0 =   99.5862

>> Y2 = Xy + 1.64*Sy
y2 =  100.4544

>> plot(k,y,'b',k,0*k+Y2,'m--',k,0*k+Y0,'m--')
>> xlabel('Sample Number');
>> ylabel('Distance (mm)')

Filtered Output with an IIR Filter & 90% Confidence Interval



Summary: 

Taking the average of five data points is a filter.  It does reduce the noise and the standard

deviation.

Running the data through a 2nd-order IIR filter works much better, however.

You could reduce the noise even further using higher-order IIR filters

If you're going to use just a few terms, an IIR filter works much better than taking the averag

Analysis and design is a little bit harder though

Filter Mean Std 90% Confidence Interval

None 100.08 2.99 95.18 .. 104.98

FIR 99.83 1.39 97.55 .. 102.10

IIR 100.02 0.26 99.59 .. 100.45

Filter Gain:  No Filter (blue),  FIR Filter (red),  IIR Filter (pink)


