ECE 376 - Test #3: Name _____

Spring 2025. Open-Book, Open Note.

1) Edge Interrupts: Write a C program which uses edge interrupts for a game show:

- When button C is pressed, the lights on PORTC and PORTD are turned off in the main loop
- When button A is pressed,
 - If PORTD is off, the lights on PORTC turn on (A buzzed in first)
 - If PORTD is on, the lights on PORTC remain off
- When button B is pressed,
 - If PORTC is off, the lights on PORTD turn on (B buzzed in first)
 - If PORTC is on, the lights on PORTD remain off

Specify the interrupts used and their initialization.

Button C	Button A	Button B
pin used	Pin Used, Interrupt Used, Set-Up (rising/falling0	Pin Used, Interrupt Used, Set-Up (rising/falling0
RB7	RB0 INT0 Rising Edge	RB1 INT1 Rising Edge

Specify the interrupt service routines (or main routine if using that for Button C)

Main Loop	Button A interrupt	Button B interrupt
<pre>while(1) { if(RB7) { PORTC = 0; PORTD = 0; } }</pre>	<pre>if(INTOIF) { if(PORTD == 0) PORTC = 0xFF; else PORTC = 0;</pre>	<pre>if(INT1IF) { if(PORTC == 0) PORTD = 0xFF; else PORTD = 0;</pre>
	INTOIF = 0; }	INT1IF = 0; }

2) Timer Interrupts: Write a C program which uses timer interrupts for a game show:

- Timer2 is set up to interrupt every N clocks
 - N = 10,000 + 1000 * birth month (1..12) + 100 * birthday (1..31)
 - Example: May 12th would result in N = 10,000 + 5*1000 + 12*100 = 16,200
- Every Timer2 interrupt, it checks three buttons
 - Player A: RB0
 - Player B: RB1
 - Reset: RB7
- If RB7 is pressed lights on PORTC and PORTD are turned off
- If RB0 is pressed (player A)
 - If PORTD is off, the lights on PORTC are turned on (A buzzed in first)
 - Otherwise, the lights on PORTC remain off
- If RB1 is pressed (player B)
 - If PORTC is off, the lights on PORTD are turned on (B buzzed in first)
 - Otherwise the lights on PORTD remain off

Intialization: Specify A/B/C for Timer2

N # clocks between interrupts 10,000 + 1000 * birth month + 100 * birth day	A, B, C Timer2 Initialization
N = 16,200	A = 4 C = 16 B = 253

Specify the main routine and the Timer2 interrupt service routine

Main Routine	Timer2 Interrupt Service Routine
<pre>while(1) { } </pre>	<pre>if(TMR2IF) { if(RB7) { PORTC = 0; PORTD = 0; } if(RB0) { if(PORTD == 0) PORTC = 0xFF; else PORTC = 0; } if(RB1) { if(PORTC == 0) PORTD = 0xFF; else PORTD = 0; } TMR2IF = 0; } </pre>

3) Capture Interrupts: Use Timer1 Capture interrupts for a game show.

- When button C is pressed,
 - PORTC and PORTD are turned off and
 - A's time and B's time are set to zero (default)
- When button A is pressed,
 - The time buton A was pressed is recorded as a 32-bit time accurate to 100ns (one clock)
 - If A's time is less than B's time, the lights on PORTC are turned on (A buzzed in first)
 - If A's time is more than B's time, the lights on PORTC remain off
- When button B is pressed,
 - The time button B was pressed is recorded as a 32-bit time accurate to 100ns (one clock)
 - If B's time is less than A's time, the lights on PORTD are turned on (B buzzed in first)
 - If B's time is more than A's time, the lights on PORTD remain off

Specify the initialization for each interrupt used

Timer1	Capture 1	Capture 2
pre-scalar	rising / falling / 4th rising / 16h rising	rising / falling / 4th rising / 16h rising
1	Rising Every edge	Rising Every Edge

Specify the main routine and the interrupt service routines

Main Loop	Timer1	Capture 1 & Capture 2
<pre>while(1) { if(RB7) { PORTC = 0; PORTD = 0; A = 0; B = 0; } } }</pre>	<pre>if (TMR1IF) { TIME += 0x10000; TMR1IF = 0; } </pre>	<pre>// both buttons pressed within 50 clocks if (CCP1IF) if(A == 0) A = TIME + CCPR1; if (CCP2IF) if(B == 0) B = TIME + CCPR2; // see who won if(CCP1IF) { if((B == 0) (A < B)) { PORTC = 0xFF; PORTD = 0; } CCP1IF = 0; } if(CCP2IF) { if((A == 0) (B < A)) { PORTC = 0; PORTD = 0xFF; } CCP2IF = 0; } notes: On a tie (A == B), neither light turns on</pre>

4) Digital Filter Design: Assume X and Y are related by the following transfer function:

$$Y = \left(\frac{7(s+40)}{(s+2)(s+D)(s+M)}\right)X = G(s) \cdot X$$

where D is your birthday (1..31) and M is your birth month (1..12). Give the transfer function of a digital filter which has the same time & frequency response as G(s).

• Assume a sampling rate of 15ms (T = 0.015)

M = 12

D = 14

$$G(s) = \left(\frac{7(s+40)}{(s+2)(s+12)(s+14)}\right) X$$

Convert the poles and zeros

s = -40	$z = e^{sT} = 0.5488$
s = -2	$z = e^{sT} = 0.9704$
s = -12	$z = e^{sT} = 0.8353$
s = -14	$z = e^{sT} = 0.8106$

so

$$G(z) = \left(\frac{k(z-0.5488)}{(z-0.9704)(z-0.8353)(z-0.8106)}\right)$$

At DC (s = 0)

$$\left(\frac{7(s+40)}{(s+2)(s+12)(s+14)}\right)_{s=0} = 0.7143$$

Match the DC gain

$$\left(\frac{k(z-0.5488)}{(z-0.9704)(z-0.8353)(z-0.8106)}\right)_{z=1} = 0.7143$$

k = 0.0017

so

$$G(z) = \left(\frac{0.0017(z - 0.5488)}{(z - 0.9704)(z - 0.8353)(z - 0.8106)}\right)$$